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Quantitative compositional analysis of sedimentary materials
using thermal emission spectroscopy: 2. Application

to compacted fine-grained mineral mixtures

and assessment of applicability of partial

least squares methods

C.Pan', A. D. Rogers’, and M. T. Thorpe'

'Department of Geosciences, Stony Brook University, Stony Brook, New York, USA

Abstract Fine-grained sedimentary deposits on planetary surfaces require quantitative assessment of
mineral abundances in order to better understand the environments in which they formed. One way that
planetary surface mineralogy is commonly assessed is through thermal emission (~6-50 um) spectroscopy. To
that end, we characterized the TIR spectral properties of compacted, very fine-grained mineral mixtures of
oligoclase, augite, calcite, montmorillonite, and gypsum. Nonnegative linear least squares minimization (NNLS)
is used to assess the linearity of spectral combination. A partial least squares (PLS) method is also applied to
emission spectra of fine-grained synthetic mixtures and natural mudstones to assess its applicability to
fine-grained rocks. The NNLS modeled abundances for all five minerals investigated are within £10% of the
known abundances for 39% of the mixtures, showing the relationships between known and modeled
abundance follow nonlinear curves. The poor performance of NNLS is due to photon transmission through
small grains over portions of the wavelength range and multiple reflections in the volume. The PLS method was
able to accurately recover the known abundances (to within £10%) for 78-90% of synthetic mixtures and for
85% of the mudstone samples chosen for this study. The excellent agreement between known and modeled
abundances is likely due to high absorption coefficients over portions of the thermal infrared (TIR) spectral
range, and thus, combinations are linear over portions of the range. PLS can be used to recover abundances
from very fine-grained rocks from TIR measurements and could potentially be applied to landed or orbital
TIR observations.

1. Introduction

Sedimentary deposits, including fine-grained siliciclastic materials, clay, sulfate, and hematite, have been found
on the Martian surface, and their formation may indicate liquid water activity for a period of time in early Martian
history (e.g., [Christensen et al., 2000a; Malin and Edgett, 2000; Squyres et al., 2004; Ehimann et al., 2008b;
Grotzinger et al, 2014; McLennan et al, 2014]). For example, sandstones in the Burns formation, Meridiani
Planum, contain significant abundances of sulfate and hematite, indicating possible evaporitic and diagenetic
processes [e.g., Christensen et al., 2004b; McLennan et al., 2005; Glotch et al., 2006]. Carbonate minerals are iden-
tified in the soils at the Mars Phoenix Landing site [Boynton et al., 2009], in rare outcrops [Ehimann et al., 20083,
2008b], and in low quantities in the global Martian dust [Bandfield et al., 2003]. Last, clay minerals have been
identified in numerous geologic settings [e.g., Poulet et al., 2005; Ehlmann et al., 2011; Carter et al,, 2013], includ-
ing in fans and deltas within sedimentary basins, which may indicate alteration by substantial amounts of water.

Interpreting the origin of sedimentary materials requires detailed analysis of geologic context, stratigraphy,
mineral assemblages, and mineral abundances (e.g., [McLennan et al., 2005; Tornabene et al., 2008; Wray
et al, 2008; Mustard et al., 2009; Dobrea et al., 2010; Michalski and Niles, 2010; Roach et al., 2010; Ehlmann
et al., 2011; Grotzinger and Milliken, 2012]). One of the ways to characterize mineral assemblage and abundances
remotely is through thermal emission spectral measurements (e.g., [Lyon, 1965; Kahle et al., 1984; Christensen
et al., 2000b; Lucey, 2004; Hook et al., 2005]), which have been acquired of Martian surfaces both from orbit
and from the Mars Exploration Rover missions. Data from the Mars Global Surveyor Thermal Emission
Spectrometer [Christensen et al,, 2001] (200-1650 cm ™', 3 x 8 km spatial resolution) have been used to deter-
mine the distribution and abundance of minerals at global and regional scales. Miniature Thermal Emission
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Spectrometers [Christensen et al., 2004a, 2004b], on board the Spirit and Opportunity rovers, measured
thermally emitted radiance from soils, outcrops, and float rocks over the 400-1650 cm™ range. And the
Mars Odyssey Thermal Emission Imaging System [Christensen et al., 2003] measures emitted energy over nine
broad spectral channels between ~650 and 1550 cm ™", with a spatial resolution of 100 m/pixel, allowing for
discrimination of compositional units at the outcrop scale.

Spectral absorptions measured in the thermal infrared (TIR) range arise from molecular vibrations in the mate-
rial of interest. The vibrations occur at specific frequencies based on the chemical composition and structure of
the mineral of interest (e.g., [Farmer, 1974]). For mineral mixtures (e.g., rocks), the spectra of the individual com-
ponents of the rock combine to produce the mixed spectrum. Previous studies of igneous and metamorphic
rocks, as well as coarse-grained sand mixtures, have shown that the component spectra combine in proportion
to their volume abundance in the mixed spectrum when grains are larger than ~>60pum [Ramsey and
Christensen, 1998; Feely and Christensen, 1999]. On this basis, linear spectral models of thermal emission spectra
measured remotely have been used to estimate mineral abundances of Martian surface materials in low-dust
regions [e.g., Bandfield, 2002; Rogers and Christensen, 2007; Huang and Xiao, 2014]. However, the spectral mixing
behavior of compacted, fine-grained mineral mixtures that would be characteristic of sedimentary depositional
environments (e.g., paleosols, mudstones, mixed-phase cements) has received little attention.

A difference in spectral mixing behavior for fine-grained rocks might be expected, given previous work
demonstrating spectral dependence on grain size and porosity in the thermal infrared (TIR) (e.g., [Hunt and
Vincent, 1968; Clark and Roush, 1984; Salisbury and Wald, 1992; Hapke, 1993; Mustard and Hays, 1997]. In a non-
compacted volume consisting of particles whose diameters are on the order of the measured wavelength,
there are proportionally more surface and internal reflections compared to larger grains. In spectral regions
where the absorption index (k) is large (strongly absorbing), a reduction in spectral contrast with decreasing
particle size is observed due to increased opportunities for absorption. In spectral regions where k is small
(weakly absorbing), spectral contrast increases, due to increased opportunity for photons to exit the surface
through refraction at each grain interface [Hunt and Vincent, 1968; Moersch and Christensen, 1995]. For
mixtures of noncompacted particles whose diameters are on the order of the measured wavelength, the
increased number of reflections described above leads to photon interaction with multiple phases before
exiting the mixture, and thus, the observed absorptions are not predictive of volume abundances (nonlinear
mixing) (e.g., [Mustard and Hays, 1997; Ramsey and Christensen, 1998]).

In a volume where small particles are closely packed, multiple surface reflections are reduced, and spectra
more closely resemble those from coarse-grained materials [Salisbury and Wald, 1992]. Despite this, a volume
scattering component remains due to the grain size being equal to or smaller than the mean optical path
length (e.g., [Hunt and Logan, 1972; Clark and Roush, 1984]). These effects of compaction on fine-grained
mixtures have not been examined in a systematic manner, however. Because k is wavelength-dependent
for each mineral, and transmission through small grains occurs where k is small (e.g., [Hunt and Logan,
1972; Salisbury et al., 1987; Cooper and Mustard, 2002]), we would expect a mixture of linear and nonlinear
mixing behavior that varies with wavelength. Characterizing the TIR spectral mixing behavior of compacted
fine-grained mineral assemblages is necessary for facilitating quantitative mineralogy of sedimentary
surfaces and understanding their origins from spectral measurements.

In a companion paper [Thorpe et al., 2015, hereafter as “paper 1], we characterize the spectral mixing beha-
vior of a suite of terrestrial sandstones and mudstones to assess the accuracy of quantitative mineral
abundance estimates derived from thermal emission spectra of sedimentary rocks. In this paper, we charac-
terize the spectral properties of compacted, very fine grained (<10-25 um) mineral mixtures to assess spec-
tral mixing behavior of very fine grained materials. For the first time, we also apply a partial least squares (PLS)
method to model mineral abundance from thermal emission spectra and provide an assessment of the
applicability of PLS to fine-grained rocks.

2, Data and Methods
2.1. Sample Preparation

Five minerals including oligoclase, augite, calcite, gypsum, and montmorillonite were used for this study.
These five minerals were chosen to encompass a suite of basaltic minerals as well as alteration products that
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Table 1. Percentile of Particle Size®

10th Percentile 20th Percentile 50th Percentile 80th Percentile 90th Percentile
Oligoclase 0.9 um 1.4 um 29 um 55pum 7.8 um
Augite 0.8 um 1.7 um 4.1 um 7.3 um 9.4 um
Calcite 0.9 um 1.3 um 2.5um 49 um 7.5 um
Gypsum 4.8 um 10.0 um 23.7 um 45.1 pm 62.2um
Montmorillonite 0.9 um 1.4 um 2.8 um 6.6 um 179 um

alOligoclase (WAR-0234), Augite (WAR-6474), Calcite (WAR-1604), Montmorillonite (SWy-1), and Gypsum (CAS-10101414). The median grain size of montmoril-
lonite, derived from laser diffraction, is larger than expected for pure clay. This may be due to either particle flocculation during measurement [Sperazza et al.,
2004] or possibly larger-grained impurities [Chipera and Bish, 2001]. Oligoclase and augite compositions were confirmed with electron microprobe. Calcite and
gypsum samples are spectrally indistinguishable from well-characterized samples in Lane and Christensen [1997] and Lane [2007], confirming the quality of these
samples. The montmorillonite sample was characterized using X-ray diffraction and contains ~6% quartz. No other impurities were detected.

have been identified on Mars. Montmorillonite was purchased from the Clay Minerals Society, and the other
four were from Ward's Science. The oligoclase sample from Ward's was labeled “albite” but is actually oligoclase,
confirmed by electron microprobe (Table 1). The gypsum sample was already in powdered form. The oligoclase,
augite, and calcite samples were crushed with an agate mortar and pestle. Except for gypsum, all samples were
then centrifuged to obtain particle sizes less than 10 um [Jackson, 1967] and to reduce impurities for montmor-
illonite [Moore and Reynolds, 1997] (Table 1). Particle size was measured using a Malvern Instruments
Mastersizer 2000 laser diffractometer with Hydro 2000MU pump accessory at Stony Brook University. The med-
ian particle sizes used in this study were 3 um for oligoclase, 3 um for montmorillonite, 4 um for augite, 2.5 um
for calcite, and 23 um for gypsum (Table 1). Mixtures of two, three, and four components were made in varying
proportions by volume (Table 2). Single phase and mixture samples were pressed into ~3 mm thick pellets with
~1cm in diameter at 15000 pound-force per square inch to generate compacted samples. Pellets were visually
shiny and reflective, suggesting an absence of clinging fines. Though pressing can result in a preferred grain
orientation, this should not negatively influence our results because we are using pressed pellets for both
the mixed spectra and the end-member spectra, and thus, orientations should be similar. Coarse-grained sam-
ples with particle size larger than 500 um of oligoclase, augite and calcite, and loose powder of all five minerals
were also prepared for spectroscopic measurements and comparison.

2.2. Raman Microspectroscopy

To validate whether the targeted volume percentages in Table 2 are close to areal abundance in the pellets,
Raman spectral images of some mixture pellets were measured. The Raman spectra were measured using a
WITec alpha300R confocal Raman imaging system at the Stony Brook University Vibrational Spectroscopy

Table 2. Volume Abundance of Mixture Minerals

Mixtures Proportion (vol %)
Oligoclase:augite 10:90, 20:80, 50:50, 80:20, 90:10
Oligoclase:montmorillonite 10:90, 20:80, 50:50, 80:20, 90:10
Oligoclase:gypsum 10:90, 20:80, 50:50, 80:20, 90:10
Augite:montmorillonite 10:90, 20:80, 50:50, 80:20, 90:10
Augite:calcite 10:90, 20:80, 50:50, 80:20, 90:10
Augite:gypsum 10:90, 20:80, 50:50, 80:20, 90:10
Montmorillonite:calcite 10:90, 20:80, 50:50, 80:20, 90:10
Montmorillonite:gypsum 10:90, 20:80, 50:50, 80:20, 90:10
Calcite:gypsum 10:90, 20:80, 50:50, 80:20, 90:10
Oligoclase:augite:calcite 20:20:60, 40:40:20, 45:45:10
Oligoclase:augite:montmorillonite 20:20:60, 40:40:20, 45:45:10
Oligoclase:augite:gypsum 20:20:60, 40:40:20, 45:45:10
Oligoclase:montmorillonite:gypsum 80:10:10, 60:20:20, 20:40:40
Augite:montmorillonite:gypsum 80:10:10, 60:20:20, 20:40:40
Oligoclasemontmorillonite:calcite 80:10:10, 60:20:20, 20:40:40
Augite:montmorillonite:calcite 80:10:10, 60:20:20, 20:40:40
Oligoclase:augite:montmorillonite:calcite 40:40:10:10, 30:30:20:20
Oligoclase:augite:montmorillonite:gypsum 40:40:10:10, 30:30:20:20

PAN ET AL.

TIR SPECTROSCOPY OF SEDIMENTARY MATERIAL 1986



@AG U Journal of Geophysical Research: Planets 10.1002/2015JE004881

Lab. For each pellet, hyperspectral Raman images of three 75 x 75 um areas were measured for three differ-
ent pellets with 1cm™" spectral resolution. The spectral angle mapping (SAM) [Kruse et al,, 1993] supervised
classification method was used to determine the areal abundance of minerals in each area. SAM analysis of
Raman spectral images results showed that areal abundance is within £5% of targeted volume percentage in
these pellets. An example is shown in the supporting information (Figure S16).

2.3. Thermal Infrared Spectroscopic Measurements

Thermal infrared spectra of pellets were measured at the Stony Brook University Vibrational Spectroscopy
Lab from ~225 to 2000cm ™" at 2cm ™" spectral sampling using a Nicolet 6700 Fourier transform infrared
spectrometer. Except for gypsum-bearing samples, samples were heated and maintained at 80°C to provide
adequate signal-to-noise ratio. In order to avoid dehydration of gypsum during measurement, gypsum-
bearing mixtures were cooled with dry ice for several hours and then measured [Baldridge and Christensen,
2009]. Sample temperatures during measurement were ~ —10°C, ~35°C below detector temperature. This
results in slightly lower signal-to-noise ratios than the conventional emissivity measurement method (where
samples are heated, e.g., Ruff et al. [1997]), but because the samples for measurement exhibit high spectral
contrast, the quality of the measured spectra is more than sufficient for resolving all features [Baldridge
and Christensen, 2009]. A blackbody heated to 70°C and 100°C was used to generate the instrument response
function, which is then use to convert measured sample signal to radiance units. Environmental radiance con-
tributions are controlled using a temperature-regulated sample chamber; these contributions are mathema-
tically removed from the measured radiance using the methods of Ruff et al. [1997].

2.4. Nonnegative Linear Least Squares Minimization

To assess linearity of spectral combination in compacted fine-grained mixtures, nonnegative linear least
squares minimization (NNLS) [Lawson and Hanson, 1974] using spectra of pellets and powders of the end-
member minerals (Table 1) was used to model mineral abundance of mixtures over the 350-1650cm ™"
spectral range. Most of the major and minor minerals found on the Martian surface have thermal infrared
absorption features in these spectral ranges, and the range is comparable to that of the Mars Global
Surveyor TES and Mars Exploration Rover Mini-TES instruments. Linear least squares minimization has been
widely used to derive surface emissivity and mineral abundance from TES and Mini-TES data (e.g., [Smith
et al., 2000; Bandfield, 2002; Glotch et al., 2006; Ruff et al., 2006; Rogers and Christensen, 2007; Koeppen and
Hamilton, 2008; Rogers and Aharonson, 2008; Ruff et al., 2011; Hamilton and Ruff, 2012; Pan et al., 2015]. The
use of this method assumes linear spectral mixing across the entire spectral range (section 1).

2.5. Partial Least Squares

Partial least squares (PLS) is an extension of a multiple linear regression statistical method that assumes a
system of observations can be described with a small number of unobservable (or “latent”) variables, similar
to principal component or factor analysis techniques. PLS generalizes predictive models from these latent
variables [Wold, 1982; Wold et al., 2001] and is widely used in chemometrics, bioinformatics, and related fields.
For example, it is one of the primary data reduction techniques employed by the Mars Science Laboratory
Rover Curiosity ChemCam team [Clegg et al., 2009; Dyar et al., 2012]. It has been successfully applied to
thermal reflectance spectra of granites [Hecker et al., 2012] and was also investigated as a possible technique
to retrieve mineral abundance from near-infrared spectra of mineral mixtures [Li et al, 2012] (discussed
further in section 4.3). PLS analysis [Wold, 1982] was employed to generate a calibration model from which
unknown mineral abundance of mixture spectra (testing data set) can be predicted using spectra with known
mineral abundance (training data set). Both NNLS and PLS involve generating regression models to solve the
linear multivariate problem:

Y =B+ B X1+ B Xa + -+ BpXan

where Y is one or several dependent variables, X is the independent variable or predictor variable, f, is the
regression coefficient for the intercept, and Bi(i=1 ... n) is the matrix of regression coefficients. For NNLS, Y
is the mixture spectrum, X; is the spectral library (usually consisting of well-characterized, “pure” mineral
sample spectra) [Lawson and Hanson, 1974; Ramsey and Christensen, 1998], and f; is a function of the
number of library spectra. For PLS, X; is a matrix containing the emissivity spectra of mixtures with known
abundances, where i is the number of spectral channels, Y is the corresponding matrix of known mineral
abundances (vol %), and p; is the regression coefficient for each spectral channel i. PLS analysis determines

PAN ET AL.

TIR SPECTROSCOPY OF SEDIMENTARY MATERIAL 1987



@AG U Journal of Geophysical Research: Planets 10.1002/2015JE004881

Table 3. Mineral Abundance From XRD and Modeled Abundance Derived From PLS and NNLS for Mudstones®

Sample Label Mineral Abundance From XRD PLS Modeled Abundance NNLS Modeled Abundance
Feldspar Quartz Clay Mica Feldspar Quartz Clay Mica Feldspar Quartz Clay Mica
sm-75-165 47.13 12.17 4.34 0.00 39.02 20.95 23.79 14.22 47.13 12.17 4.34 0.00
sm-75-103 21.26 14.84 12.08 3.25 29.55 25.32 14.73 28.81 21.26 14.84 12.08 3.25
sm-75-104 20.21 9.02 15.62 2.57 18.11 23.18 19.35 36.53 20.21 9.02 15.62 2.57
sm-75-105 51.01 12.30 5.13 0.00 51.72 19.11 16.98 10.19 51.01 12.30 5.13 0.00
sm-75-107 3535 2.27 6.23 0.00 56.62 9.04 11.16 22.42 35.35 227 6.23 0.00
sm-75-134 28.67 3345 13.50 527 24.03 38.31 1247 24.92 28.67 3345 13.50 5.27
sm-75-140 24.40 22.89 14.45 3.91 16.56 38.51 11.17 34.04 24.40 22.89 14.45 391
sm-75-158 12.64 18.17 3.52 0.00 44.59 37.03 31.21 0.00 12.64 18.17 3.52 0.00
sm-75-113 16.25 29.25 13.19 5.62 17.98 39.47 11.02 30.84 16.25 29.25 13.19 5.62
sm-75-120 7.10 29.41 11.18 11.47 7.33 35.35 9.27 47.89 7.10 29.41 11.18 11.47
sm-75-142 10.83 15.98 16.26 12.33 10.99 30.37 8.25 50.61 10.83 15.98 16.26 1233
sm-75-115 15.15 23.53 10.86 12.07 18.99 2643 21.12 32.68 15.15 23.53 10.86 12.07
sm-75-117 13.44 47.69 7.84 4.04 14.41 42.92 9.61 31.99 13.44 47.69 7.84 4.04
sm-75-123 24.29 17.90 12.22 10.06 14.61 24.38 15.42 44.58 24.29 17.90 12.22 10.06

@Mineral abundance is determined by full pattern X-ray diffraction quantitative refinements from Thorpe et al. [2015].

the statistical linear correlation between the known mineral abundance and observed spectra (both of
these constitute the training set).

Single-phase pellets and powders and all of the mixtures from Table 2 were used as the training data set for
PLS, and based on this training set, regression coefficients were derived for each mineral. The derived regres-
sion coefficients vary as a function of wavelength and are related to the thermal infrared spectral features
that most strongly drive the correlations between mineral abundance and spectral properties in the mixed
set of spectra. This is described in more detail in section 3.1.2. The “PLS-2" method commonly applied to
ChemCam data [Clegg et al., 2009; Dyar et al., 2012], where multiple Y variables are simultaneously analyzed,
was used. PLS-2 allows for better prediction of regression coefficients over PLS-1, because of correlations
between mineral components within the mixtures (e.g., as one component is increased, there must be a
decrease in another component) [e.g., Dyar et al., 2012]. In this work, the number of latent variables within
the training set was estimated by examining the percentage of variance explained in the response variable
Y as a function of the number of components (Figures S17 and S18). Higher-number components correspond
with smaller contribution to total variance. The number of components chosen for our predictive models for
the compacted fine-grained mixtures was 15, based on an iterative process of examining the percent of
variance contribution and checking the modeled abundance results for changes with increasing number
of components. Using higher numbers of components beyond 15 was found to have little effect on the
predictive performance of the model (<3% change in modeled abundance, on average); these first 15
components account for >90% of the variance within the training set. Next, a “leave-one-out” approach
was used to generate regression coefficients from the original training data set, excluding one spectrum from
the set. Those coefficients were then applied to the excluded spectrum to retrieve mineral abundance for
that spectrum. This process was repeated for all of the mixtures from Table 2 and then compared with the
known abundances for each mixture to evaluate the PLS model accuracy.

Lastly, we applied the same method to the mudstone samples from paper 1 with the same wave number
range as paper 1 (230-1650cm™"), in order to examine the performance of PLS applied to natural rock
samples. There are 14 mudstone samples, whose mineral abundances were determined by X-ray diffraction
(XRD) [Thorpe et al., 2015] (given also in Table 3). The mudstone samples are from the Huronian Supergroup
(2.5-2.2 Ga) outcrop belt on the northern shore of Lake Huron, Canada. As described in paper 1, they vary in
their abundances of sericite, chlorite, and framework minerals. Only the minerals with abundances more than
3 vol %, as determined by XRD, and minerals that were clearly present in almost all of the mudstone samples
were included as inputs to our PLS model. These minerals groups are feldspar, quartz, clays, and mica. Thus,
the training set for the mudstone samples consists of the XRD-determined abundances for each of these four
groups, as well as the mudstone spectra. The number of components chosen for mudstone models was five
(Figure S18), which represents more than 95% of the variance. Using higher numbers of components had
negligible effects on the final modeled abundances.
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Figure 1. Spectral comparison of sand (500-841 um) and pellet samples
of oligoclase, augite, and calcite. Spectral pairs are offset for clarity. No
scaling factors were applied.

3. Results
3.1. Sand Samples and Pressed Pellets

Figure 1 shows a comparison of TIR
spectra of sand (500-841 um) and pellet
samples of oligoclase, augite, and cal-
cite. Notable differences between the
sand and pellet versions of each mineral
are present, both in terms of spectral
contrast and spectral shape. These dif-
ferences likely arise from an increased
contribution of volume scattering in
the compacted fine-grained material
relative to that in the larger, optically
thick sand grains.

3.1.1. NNLS

In this section, we present the spectra
from each set of mineral mixtures
(Table 2), along with the best-fit spectral
model from NNLS (Figures 2-4). Due to

space limitations, only one representative set of spectra from the binary, ternary, and quarternary mixtures
is shown. The remaining sets of spectra are shown in the supporting information (Figures S1-S15). In
Figure 5, we show the modeled abundances for all mixtures, compared with the known abundance.

16 T 1

Measured spectra —— Sin
1.5F  Modeled spectra ——

Emissivity
o

Oligoclase

09F

) T
Oligoclase and Augite mixture

Single phase powder —— A

gle phase pellet =—

8
1600 1400 1200 1000
Wavenumber (cm’)

800 600 400

Figure 2. Measured and modeled spectra of oligoclase and augite compacted mixtures derived from NNLS. The mixtures
were modeled with compacted oligoclase and compacted augite only. Both pellet and powder spectra of single-phase
end-members were plotted for comparison. Spectral pairs are offset for clarity. No scaling factors were applied.
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Figure 3. Measured and modeled spectra of augite, calcite, and montmorillonite compacted mixtures from NNLS. The
mixtures were modeled with compacted augite, calcite, and montmorillonite only. Both pellet and powder spectra of
single-phase end-members were plotted for comparison. Spectra are offset for clarity. No scaling factors were applied.

Figures 2-4 show representative model fits from 3 of the 18 mixtures examined. Some of the mixtures are
well modeled by their end-member pellet components, whereas others are not. Additionally, some spectra
are well modeled over portions of the spectral range, with other portions showing large misfits. Because each
spectrum was modeled with its known components, the possibility of missing end-members may be ruled
out, and the misfits may be attributed directly to nonlinear spectral mixing.

For oligoclase-bearing mixtures, approximately 60% of modeled oligoclase abundances fall within £10% of
the true abundance, with remaining mixtures generally overestimated. Model accuracy was generally better
for two component mixtures than for more complex mixtures with three or more components (Figure 5a).
Modeled abundance accuracy is generally better for higher true abundances of oligoclase.

For augite-bearing mixtures, approximately half of the results fall within +£10% of the true abundance, with
the remaining half generally overestimated (Figure 5b). There is no clear trend of the model accuracy with
mixture complexity or true abundance.

Approximately 60% of the modeled calcite abundances are within +10% of true abundance, whereas the
remainder is generally overestimated (Figure 5c). For the three- and four-component mixtures, smaller
abundances (<209%) are more accurately modeled.

For montmorillonite-bearing mixtures, ~30% of the results fall within 10% from the known, with most
modeled abundances underestimated (Figure 5d). The modeled abundance accuracy improves when the
true abundance of montmorillonite is less than 10%.

For gypsum-bearing mixtures, less than 40% of the results are within 10% of the known abundance
(Figure 5e). The model accuracy improves slightly for lower abundances.
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Figure 4. Measured and modeled spectra of oligoclase, augite, montmorillonite, and gypsum compacted mixtures from NNLS.
Spectra of single phases were plotted for comparison. Spectral pairs are offset for clarity. No scaling factors were applied.

In summary, modeled abundances for all five minerals investigated are within £10% of the known
abundances for 39% of the mixtures. Model accuracy varies for each mineral group and also depends on what
other mixture components are present. For example, montmorillonite abundances in binary mixtures with
gypsum are accurately determined, whereas montmorillonite abundances in binary mixtures with augite
are generally underestimated. For each mixture in a given series (e.g., 10:90, 20:80, and 50:50), differences
from the known abundance generally do not follow a constant offset from the known, rather the
relationships between known and modeled abundance follow nonlinear curves (Figure 5).

3.1.2. PLS

In this section, we present the regression coefficients derived from PLS using a training set containing all mix-
ture series shown in Table 2, along with the end-members in both powder and pellet form (Figure 6). The
inclusion of both powder and pellet end-member spectra in our training set allows us to better account
for possible volume scattering features that are not fully diminished in spectra from the pelletized mixtures
(section 1). The training set included 88 spectra in total. Then, using a leave-one-out approach, we repeatedly
generate new sets of regression coefficients and then apply those to the missing sample (section 2.5), in order
to determine the accuracy to which PLS can predict the mixture abundances (Figure 7).

For oligoclase, the strongest regression coefficients from PLS are located at ~1170, 870, 850, and between
750 and 790cm™" (Figure 6a). Of these, only the features near ~850 and 870cm™" correspond directly
with the center of a major absorption (in this case, the powdered version of oligoclase). The regression
coefficient peak near ~1170cm ™" corresponds with the shoulder of the broad fundamental absorption
in oligoclase, rather than the center of the absorption, and the strong coefficients between 750 and
790cm™" do not appear to correspond with any particular absorption in the pellet or powder versions
of these samples. Pelletized oligoclase exhibits a deep absorption near ~1010cm ™', which corresponds
with a moderately strong negative regression coefficient “dip” but this feature is not as strongly predictive
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Figure 5. Measured abundance and modeled abundance derived from NNLS for (a) oligoclase, (b) augite, (c) calcite, (d) montmorillonite, and (e) gypsum and
(f) percentage of points < £10% of true abundance. The solid line represents a perfect correspondence between known abundance and NNLS modeled
abundance, and the dashed lines are £10% from the 1:1 correspondence line. The error bars are statistical errors from NNLS [Rogers and Aharonson, 2008].

as some of the other frequencies described above. Despite the lack of clear correspondence between
regression coefficient values and emissivity features, the coefficients accurately predict the abundance
of oligoclase, with more than 84% of the modeled oligoclase abundances falling within £10% of the
known abundance (Figure 7a). False positives were observed for some nonoligoclase-bearing mixtures;
these most commonly occurred in montmorillonite-bearing mixtures, and modeled abundances were
generally <20% (Table S2).
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Figure 6. Regression coefficients derived from PLS for (a) oligoclase, (b) augite, (c) calcite, (d) montmorillonite, and (e) gypsum. The blue lines are regression coeffi-
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Figure 7. Measured abundance and modeled abundance derived from PLS for (a) oligoclase, (b) augite, (c) calcite, (d) montmorillonite, and (e) gypsum (f) and
percentage of points < +10% of true abundance. The solid line represents a perfect correspondence between known abundance and PLS modeled abundance,
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For augite, the strongest regression coefficients are at ~1170, 850, 670, 500, 460, and 400 cm ™' (Figure 6b). As
with oligoclase, most of these do not correspond with the strongest emissivity absorptions or peaks. The
~1170cm™" coefficient corresponds to the Christiansen feature of augite. The ~460 cm™" coefficient corre-
sponds to the near center of a low-frequency major absorption of the augite pellet and the ~400 cm ™" value
to a minor absorption feature of both augite powder and pellet. The ~850 cm ™' coefficient is colocated with
the shoulder of the broad fundamental absorption, and the ~670cm™" value is not correlated with any
absorption. Augite abundances for approximately 22% of the mixtures are incorrectly modeled by more than
+10% (Figure 7b). The accuracy of modeled abundance increases as the number of mixture components
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increase (Figure 7b). In some mixtures where augite is not truly present, low abundances of augite (<20%)
were modeled with PLS, with one mixture (oligoclase-montmorillonite-gypsum) exhibiting 45% modeled
abundance of augite (Table S2). These false positives are discussed further in section 4.

For calcite, in general, the regression coefficients overall are lower than those of the other four minerals. As
discussed in section 4, this is likely due to the very low degree of overlap between absorptions in the pellet
and powder versions of calcite, as well as the presence of features for calcite powder occurring across much
of the spectral range. Though they are generally low, the strongest regression coefficients are located near
~1590, 1550, 1280, 1010, and 1050 cm™'. The ~1550, 1280, 1010, and 1050cm ™" coefficients correspond
to absorption features of calcite powder while the coefficient at ~1590cm™" is near the Christiansen fre-
quency (Figure 6c). The strongest absorption feature of calcite pellet at ~1500cm™"' corresponds to only a
moderately strong regression coefficient compared to the other features. Modeled calcite abundances for
more than 90% of the mixtures fall within the +10% of known abundance. Modeled abundances for the
remaining mixtures are generally underestimated, except for one false detection (Figure 7c). Calcite abun-
dances from the three-component mixtures are modeled less accurately than those from two- and four-
component mixtures (Figure 7c).

Montmorillonite exhibits a fewer number of strong regression coefficients, but those values are among the
highest observed for all five minerals of this study. As described in section 4, this is likely due to similarities
between the powdered and pellet versions of montmorillonite. Two of the strongest regression coefficients,
at ~500 and 470 cm ™ correspond directly with the peak and valley of one half of the spectral doublet that is
characteristic of dioctahedral smectite clays [Michalski et al., 2006; Ruff and Christensen, 2007] (Figure 6d). A
strong coefficient at ~550 cm ™' corresponds to the shoulder of the higher-frequency portion of the doublet.
Last, a strong coefficient at ~670 cm™ " is not related to any particular absorption or peak. The strong absorp-
tion feature of montmorillonite pellet and powder at ~1040cm™" corresponds to only a weak regression
coefficient. Modeled montmorillonite abundances for ~13% of the mixtures fall outside +10% of known
abundance (Figure 7d). As with the calcite results, modeled montmorillonite abundances for the remaining
mixtures are all generally underestimated, with a few exceptions (Figure 7d).

For gypsum, the strongest regression coefficients are at ~1600-1630, 1550, 1160, and 1130 cm™". The values in
the ~1600-1630 cm ™' range correspond to a small bound water peak [Salisbury et al., 1991] in the gypsum pow-
der, which is manifested as a minor absorption in the gypsum pellet. The other strongest coefficients correspond
to the shoulders of the broad fundamental absorption centered at ~1150cm™". Modeled gypsum abundances
for more than 90% of the mixtures fall within £10% of known abundance, with no false detections (Figure 7e).
Four of the mixtures, however, exhibit modeled gypsum abundances greater than 20% from the known value.

Note that PLS has no constraint to sum to 100%; in addition, negative abundance values are permitted by the
algorithm (Figure 7 and Table S2). In our results, negative values are usually between 0 and —5%. Small negative
values likely arise from subtle, nonsystematic differences in slope between samples. The slight differences in
spectral slope can arise from variable temperatures in the field of view during the measurement. This would
result in overestimate or underestimate of one component, resulting in compensation using negative abun-
dances of other components.

3.2. Mudstone Samples

Figure 8 compares NNLS-derived mineral abundances with PLS-derived abundances to that of XRD
abundances for the mudstone samples from paper 1 [Thorpe et al., 2015]. The PLS method retrieved known
abundances to within £10% for the majority of the mudstones, with no more than three samples falling
outside this range. Modeled mica abundances are significantly improved using the PLS method. For the
remaining three mineral groups, model accuracy from PLS and NNLS is comparable, with perhaps slightly
better accuracy for PLS on quartz and clay abundances (Figure 8).

4, Discussion

4.1. Spectral Characteristics of Compacted Fine-Grained Particulates

Figure 1 demonstrates that the spectral characteristics of compacted fine grains exhibit nonnegligible differ-
ences from coarse-grained sands of identical composition. Compared to sand samples, compressed powders
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Figure 8. Measured XRD abundances and modeled abundance derived from PLS for (a) feldspar, (b) quartz, (c) mica, (d) and clays for mudstone samples. Modeled
abundance derived from NNLS was plotted for comparison. The solid line represents a perfect correspondence between known abundance and modeled abundance,
and the dashed lines are +10% from the 1:1 correspondence line.

show reduced spectral contrast and shifts in the position of some absorption features. As described in
section 1, this is to be expected given that both surface and volume scattering occur within a particulate
medium [Hunt and Vincent, 1968; Salisbury and Eastes, 1985; Salisbury and Wald, 1992]. Compaction of the fine
particles minimizes (or eliminates) the multiple surface reflections, but some amount of the volume scattered
component remains [Salisbury and Wald, 1992]. Because the magnitude of k is wavelength-dependent,
spectral changes due to transmission through small grains and multiple reflections in the volume are only
observed across portions of the spectrum.

4.2. Applicability of NNLS to Compacted Fine-Grained Mixtures

Compared to coarse-grained (> 60 um) particulate mixtures and rocks [Ramsey and Christensen, 1998; Feely
and Christensen, 1999; paper 1], the accuracy of the NNLS model is poor for compacted fine-grained mixtures
(Figure 5). Though many of the modeled abundances are within +10% of the known abundance, approxi-
mately 40-70% were not, depending on which minerals were present in each combination. For oligoclase,
augite, and calcite, the modeled abundances are overestimated in most of the cases, whereas for montmor-
illonite and gypsum, the modeled abundances are generally underestimated.

Clues to the cause(s) of the poor performance of NNLS come from Figure 1, which shows noticeable spec-
tral changes between pressed fine grains and coarse-grained sands of the same composition. This sug-
gests that transmission through small grains is occurring over portions of the wavelength range, due to
small absorption coefficients in those ranges. In addition, the larger number of grains per volume results
in multiple reflections in the volume (section 4.1). With mixtures, these volume scattering effects would
result in a disproportionate number of photon interactions with the more strongly absorbing phases
(which varies as a function of wavelength) and thus reduces the ability to model abundances accurately
with NNLS.
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Over portions of the spectral range, however, the features scale predictably with abundance. For example, in
the oligoclase-augite binary mixture (Figure 2), an augite fundamental feature near ~1070 cm™" decreases in
strength with decreasing abundance and is replaced by an oligoclase peak at that location. In another
example, using the gypsum-oligoclase binary mixture (Figure S2), the gypsum Restrahlen band decreases
with gypsum abundance, and the oligoclase fundamental feature near 1010cm ™" begins to appear. These
examples indicate that volume scattering is not significant for the entire wavelength range for many of the
mixtures. However, because NNLS treats each channel equally, it is unable to produce a linear combination
across the entire wavelength range used for modeling.

4.3. Applicability of PLS to Compacted Fine-Grained Mixtures

The PLS method was able to accurately recover the known abundances (to within £10%) for 78-90% our
synthetic mixtures and for 85 % of the mudstone samples. This is in contrast to model accuracies found by
a similar study investigating a lunar sample [Li et al., 2012], in which PLS was applied to visible/near-infrared
(VNIR) spectra of mineral mixtures. We suggest that the difference in applicability findings are due to the
higher k values that are typically found in the TIR range; because k is usually very high (>1) over some portion
of the TIR, combinations are linear (or close to linear) over portions of the range. However, in the VNIR, the low
k values (usually <1072) across the full wavelength range results in nonlinear combinations across that range.
In that situation, PLS cannot be used to retrieve accurate abundances.

Despite the excellent agreement between known and modeled abundances for most of our mixtures, there
are a few issues worthy of discussion. First, false positive detections were observed for some minerals
(for example, section 3.1.2). We suggest that this is likely due to overlap in the wavelength locations of strong
regression coefficients for some of our minerals. For example, PLS identified a moderately strong regression
coefficient at ~550cm ™" and ~660cm™" for both oligoclase and montmorillonite. Correspondingly, oligo-
clase was identified at low levels in montmorillonite-bearing mixtures, even where oligoclase was absent.
Second, the regression coefficients derived from some of our mixtures are relatively low compared to others.
For example, regression coefficients derived for calcite are much lower than those derived from montmoril-
lonite. This is likely due to the grouping of both powders and pellet samples in the training set; the drastically
different absorption features in different wavelength ranges between powders and pellets may result in less
of a correlation and lower regression coefficients for a single calcite “group.” The regression coefficients are
indicators of the importance of each wavelength for predicting the abundance within the system from which
they were derived. The importance of a particular wavelength for a given mineral may be obscured or diluted
if the absorption features for powders and pellets are in different locations. In future work, a potential way to
overcome this would be to treat these as subgroups for a given mineral and combine abundances for each
subgroup. Third, the strongest regression coefficients are sometimes correlated with a strong emissivity
absorption but in other cases are not; this varies from mineral to mineral. For example, the regression
coefficients for montmorillonite at ~470 and 500cm™" are correlated to strong absorption features of
montmorillonite, but most of the coefficients for augite are not correlated to strong emissivity features of
augite. A similar phenomenon was described for Induced Breakdown Spectroscopy (LIBS) data [Dyar et al.,
2012], where the strongest regression coefficients were sometimes associated with the weaker atomic
emission lines. As described above, one possible explanation is that the spectral shapes of powder and pellet
for montmorillonite are similar, whereas for augite, they are different. However, this is also strongly controlled
by the spectral characteristics of all other components in the training set. For example, for a given mineral
whose major absorptions overlap fully or partially with another mineral, the shoulder of a feature or the
absence of a feature may prove to be the strongest drivers of the coefficients for that mineral.

In summary, all of these issues can be generally attributed to the appropriateness of the training set; thus, the
training set is the key to model accuracy of PLS. This can include not only adding mixtures of additional
varying proportions but also deleting nonrelevant mixtures from the training set.

PLS offers many advantages over NNLS but like any technique also has its limitations. The major advantage of
PLS is improved accuracy for fine-grained compacted mixtures (compare Figures 5 and 7). In addition, PLS
allows an unlimited number of samples in the training data set. In contrast, NNLS requires that the number
of library spectra be less than or equal to the number of channels in the mixed spectrum. A third advantage
is the ability to retrieve mineral abundances without a complete library of isolated, pure end-members. This
could prove useful in cases where rocks contain phases that are difficult to isolate for spectral measurement;
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example phases include pigeonite [Hamilton and Christensen, 2000] and sericite (paper 1), which are under-
represented or absent from spectral libraries. As long as these phases can be quantified in the training set
through other techniques (e.g., XRD and petrographic imaging), it should be possible to retrieve their abun-
dance from the mixed spectrum of interest despite absence of spectral library data. The biggest practical
limitation of PLS is the need to first develop a well-characterized training set of relevant mixtures. This
requires either preparation of numerous synthetic mixtures and/or characterization of natural samples
through independent quantitative techniques (e.g., XRD and petrographic imaging). A second limitation of
PLS applied to TIR spectra is that like NNLS, abundances cannot be retrieved for minerals that are spectrally
transparent across much of the wavelength range, such as chlorides (e.g., [Lane and Christensen, 1998;
Baldridge et al., 2004]). Last, as with NNLS, differences in spectral contrast within the training set, such as those
that might arise if spectra of both coarse particulate mixtures and rocks are included, can affect the derived
abundances from PLS (supporting information Text S1). Ideal training sets for PLS would include spectra from
samples of similar particle size or similar compaction. An exception to this would be the inclusion of samples
which have unique features due to their particle size (for example, fine powders, which have transparency
features that are not observable in coarse-grained samples).

Though not investigated in this study, PLS might be applicable to noncompacted fine-grained (<60 pm)
mixtures or to coated rocks, provided some portions of the wavelength range were dominated by surface
reflections. For some noncompacted mixtures of only a few components, it is possible that this condition
could be met. This is an area deserving more attention in future studies.

4.4. Implications for Mineral Abundance Estimation on Martian Surfaces

Results from our study indicate that the NNLS modeled abundances of clays, in compacted fine-grained
(<10-25 um) mixtures are commonly underestimated. This differs somewhat from previous results using
natural mudstones [Michalski et al., 2006; Thorpe et al.,, 2015], where clay abundances were commonly predicted
to be within 10% of the known or, in some cases, slightly overestimated [Michalski et al., 2006]. The differences
may be related to differences in the host matrix (e.g., what other minerals are present in the mixtures, such as
augite) or perhaps differences in bulk grain size. In any case, the possibility of underestimating clay abundances
in fine-grained compacted mixtures is relevant to interpreting mineral abundances from known phyllosilicate-
bearing regions from the higher spatial resolution NIR imaging spectrometers Compact Reconnaissance
Imaging Spectrometer for Mars and Observatoire pour la Minéralogie, I'Eau, les Glaces et I'Activité (OMEGA).
For example, from radiative transfer modeling of OMEGA NIR spectra, select regions of Mawrth Vallis exhibit
modeled abundances as high as 65%; modeled abundances are as high as 35% in other locations in the south-
ern highlands [Poulet et al., 2008]. However, conventional linear least squares models of TES spectra show less
than 15% of phyllosilicate at Mawrth Vallis and ~30% or less in the southern highlands [McDowell and Hamilton,
2009; Michalski and Fergason, 2009; Michalski et al., 2010]. Though differences in spatial resolution are likely
major contributors to these discrepancies, spatial resolution cannot fully account for the differences [Viviano
and Moersch, 2013]. Our results demonstrate that clay abundances in some fine-grained compacted mixtures
could be underestimated by ~10-40% in linear least squares models of TIR spectra.

More broadly, our study indicates that TIR spectra from very fine grained sedimentary rocks (e.g., <~10 um)
cannot be modeled reliably with the conventional least squares methods [Ramsey and Christensen, 1998;
Rogers and Aharonson, 2008]. But PLS can be used to recover abundances from very fine grained rocks to
within £10% (absolute) from TIR data sets, provided a suitable training set is available. Mini-TES observations
of fine-grained rocks at Gusev crater and Meridiani Planum [Christensen et al., 2004a, 2004b; Grotzinger et al.,
2005; McLennan et al., 2005] could be ideal data sets in which to apply PLS. PLS could also potentially be
applied to orbital observations, provided atmospheric components were first removed (e.g., [Bandfield and
Smith, 2003]). Low-dust sedimentary deposits hosting phyllosilicates such as Mawrth Vallis, Jezero crater,
and Eberswalde crater [Ehimann et al., 2008a; Murchie et al., 2009; Dehouck et al., 2010; Milliken and Bish,
2010; Milliken et al., 2010; Ansan et al., 2011; Wray et al., 2011] would be ideal for analyzing mineral abundance
with PLS, due to the likely mixture of both coarse and fine grains.

5. Conclusions

We characterized the thermal infrared spectral properties of compacted, very fine grained (<10 pm) mineral
mixtures of oligoclase, augite, calcite, montmorillonite, and gypsum. Nonnegative linear least squares
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minimization (NNLS) using spectra of pellets and powders of the end-member minerals was used to assess the
linearity of spectral combination of fine-grained mixtures, by modeling mineral abundance of mixtures over the
350-1650cm ™" spectral range. For the first time, we also applied a partial least squares (PLS) model to thermal
emission spectra of synthetic mixtures and natural mudstones to assess its applicability for retrieving mineral
abundances from to fine-grained rocks. We have made the following major observations and conclusions:

1. Notable differences between thermal infrared spectra of the sand and compacted powder (pellet)
versions of minerals are present, both in terms of spectral contrast and spectral shape. These differences
are likely due to an increased contribution of volume scattering in the compacted fine-grained material
relative to that in the larger, optically thick sand grains (section 4.1).

2. The NNLS modeled abundances for all five minerals investigated are within £10% of the known
abundances for 39% of the mixtures. Model accuracy varies depending on the mineral and also on other
mixture components (Figure 5). For oligoclase, augite, and calcite, the modeled abundances are overesti-
mated in most of the cases, whereas for montmorillonite and gypsum, the modeled abundances are gen-
erally underestimated. However, these trends depend greatly on other components present in the
mixture and cannot be universally applied (section 4.4). Results show that the relationships between
known and modeled abundance follow nonlinear curves. Drawing from the literature, we suggest that
the poor performance of NNLS is due to a combination of transmission through small grains over portions
of the wavelength range and multiple photon reflections in the volume.

3. The PLS method was able to accurately recover the known abundances (to within +10%) for 78-90% of
our synthetic mixtures. We suggest that the excellent agreement between known and modeled
abundances is due to the higher k values that are typically found in the TIR range; because k is usually very
high (>1) over some portion of the TIR range, combinations are linear over portions of the range.

4. The PLS method retrieved known abundances to within +10% for 85% of the mudstone samples, with no
more than 3 out of 14 samples falling outside this range. Modeled mica abundances are significantly
improved using the PLS method, compared to NNLS.

5. Our study indicates that thermal infrared spectra from very fine grained (<10 um) rocks cannot be
modeled reliably with NNLS. But PLS can be used to recover abundances from very fine grained rocks
to within £10% (absolute) from TIR data sets, provided a suitable training set is available. PLS could also
potentially be applied to orbital observations, provided atmospheric components were first removed.
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