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Airborne thermal infrared (TIR) overflights were combined with shoreline radionuclide surveys to investigate
submarine groundwater discharge (SGD) along the north shore of Long Island, NY between June 2013 and
September 2014. Regression equations developed for three distinct geomorphological environments suggest a
positive linear relationship between the rate of diffuse SGD and the spatial extent of the observed coastal TIR
anomalies; such a relationship provides quantitative evidence of the ability to use TIR remote sensing as a tool
to remotely identify and measure SGD. Landsat TIR scenes were unable to resolve any of the 18 TIR anomalies
identified during the various airborne overflights. Two locations were studied in greater detail via 222Rn time se-
ries and manual seepage meters in order to understand why specific shoreline segments did not exhibit a TIR
anomaly. SGD at the first site, located within a large, diffuse TIR anomaly, was composed of a mixture of fresh
groundwater and circulated seawater with elevated levels of nitrate. In contrast, SGD at the second site, where
no coastal TIR anomaly was observed, was composed of circulated seawater with negligible nitrate. Despite
the compositional differences in seepage, both sites were similar in discharge magnitude, with average time
series 222Rn derived SGD rates equal to 18 and 8 cm d−1 for the TIR site and non-TIR site, respectively. Results
suggest that TIR remote sensing has the ability to identify locations of a mixture between diffuse fresh and circu-
lated seawater SGD. If TIR anomalies can be demonstrated to represent a mixture between fresh and circulated
seawater SGD, then the cumulative area of the TIR anomalies may be used to estimate the fresh fraction of
SGD relative to the cumulative area of the seepage face, and thus allows for improved SGD derived nutrient
flux calculations on a regional scale.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Submarine groundwater discharge (SGD) is defined as the net flow
of terrestrial, meteorically derived freshwater and circulated seawater
that discharges from a coastal aquifer to the sea (Moore, 1999). SGD
may rival riverine inputs in terms of both water and chemical fluxes
(Kwon et al., 2014; Slomp& Van Cappellen, 2004) and is thus an impor-
tant component of the hydrologic cycle. SGD has been shown to be an
important driver of nutrient (particularly NO3

−) (Slomp & Van
Cappellen, 2004), metal (Beck et al., 2007; Knee & Paytan, 2011), and
carbon (Cyronak, Santos, Erler, Maher, & Eyre, 2014; Santos et al.,
2015) inputs to the coastal ocean. Excess nutrient loading derived
fromSGDhas been linked to the onset of harmful algal blooms, as for ex-
ample, in eastern Long Island, NY (Gobler & Sanudo-Wilhelmy, 2001;
Laroche et al., 1997) and dinoflagellate red-tide blooms in the southern
sea of Korea (Lee, Kim, Lim, & Hwang, 2010). Chemical fluxes sourced
nces Building, Department of
94-21000, USA.
. Tamborski).
from SGD have significant environmental repercussions and therefore
need to be extensively characterized in order to aid in coastal remedia-
tion efforts.

The terrestrial hydraulic gradient is the primary mechanism for sup-
plying fresh groundwater to the coast (Burnett et al., 2006; Santos, Eyre,
&Huettel, 2012; Taniguchi, Burnett, Cable, & Turner, 2002) and this is the
main source of new nutrients to the coastal ocean (Slomp & Van
Cappellen, 2004). SGD, including circulated seawater, is modulated by
tidal pumping (Robinson, Gibbes, & Li, 2006; Robinson, Li, & Prommer,
2007), wave set-up (Xin, Robinson, Li, Barry, & Bakhtyar, 2010), seasonal
changes in water table height (Gonneea, Mulligan, & Charette, 2013;
Michael,Mulligan, &Harvey, 2005),water level differences across barrier
beaches (Bokuniewicz& Pavlik, 1990; Rapaglia et al., 2010), density driv-
en circulation (Robinson et al., 2007) and bioirrigation (Martin, Cable,
Jaeger, Hartl, & Smith, 2006). The fresh fraction of SGD widely varies
among regions. On Long Island, NY alone, estimates range from less
than 1% (Garcia-Orellana et al., 2014) to upwards of 23% (Young, 2013).

SGD is spatially and temporally variable, occurring as both point-
source plumedischarge and as nonpoint-source, diffuse seepage. In typ-
ical unconfined coastal aquifers, SGD is concentrated near the coastline
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and decreases offshore (Bokuniewicz, 1980; Burnett et al., 2006), but
may also occur as sporadic, heterogeneous flow offshore and as true
submarine springs (Valle-Levinson, Marino-Tapia, Enriquez, &
Waterhouse, 2011). Hydraulic gradient, sediment porosity and aquifer
type control SGD rates, with karstic (Mejias et al., 2012) and fractured
bedrock aquifers (Bokuniewicz et al., 2008) typically experiencing
higher, concentrated seepage rates compared to unconsolidated sandy
aquifers, through which SGD is more diffuse.

Thermal infrared (TIR) remote sensing can resolve the spatial varia-
tion of groundwater discharge along a shoreline. Fresher, more buoyant
SGD will rise above ambient saline surface-waters (Banks, Paylor, &
Hughes, 1996). For instance, fresh groundwater tends to exist at the av-
erage annual groundwater temperature (Anderson, 2005) and there-
fore has a distinct thermal signature from that of surface-waters.
Detection of SGD via TIR remote sensing is possible in any environment
where there is significant thermal contrast between the discharging
pore fluid and the receiving surface-water body (Kelly, Glenn, & Lucey,
2013). In northern latitudes, SGD will be cooler than surface-waters
during summer months and warmer than the receiving surface-
waters during winter months (Pluhowski, 1972). The detection of SGD
is greatest during times of highest thermal contrast under calm condi-
tions and at low tide when SGD is expected to be greatest (Portnoy,
Nowicki, Roman, & Urish, 1998). Pluhowski (1972) pioneered the use
of TIR remote sensing on Long Island, NY, where coastal TIR anomalies
were associated with groundwater discharge, sewage outfall, stream
morphology, and circulation patterns.

Airborne TIR remote sensing (Banks et al., 1996; Danielescu,
MacQuarrie, & Faux, 2009; Duarte, Hemond, Frankel, & Frankel, 2006;
Johnson, Glenn, Burnett, Peterson, & Lucey, 2008; Kelly et al., 2013;
Mejias et al., 2012; Mulligan & Charette, 2006; Roseen, 2002) is a
method used for detecting areas of potential groundwater discharge.
At the appropriate scale, satellite TIR remote sensing is an effective
tool for identifying areas of SGD for field investigation (Becker,
2006; Kageyama, Shibata, & Nishida, 2012; Mallast et al., 2013;
Sass, Creed, Riddell, & Bayley, 2013; Tcherepanov, Zlotnik, &
Henebry, 2005). For example, time-series Landsat TIR data and coast-
al 222Rn surveys have been used to identify over 30 new sources of SGD
along the fractured bedrock coast of Ireland (Wilson & Rocha, 2012).
Space-borne synthetic aperture radar has been successfully used to
identify SGD over large tidal flat regions (Kim, Moon, Kim, Park, & Lee,
2011). Satellite data can also detect terrestrial groundwater discharge
zones, as Sass et al. (2013) demonstrate with Landsat TIR data from Al-
berta, Canada. Airborne TIR remote sensing, however, is capable of re-
solving SGD at a much higher spatial resolution than satellite imagery.
Airborne TIR overflights coupled with 222Rn surveys identified multiple
point-source plumes of SGD along the east coast of Spain (Mejias et al.,
2012) that would have not been identified from satellite imagery alone.
Airborne TIR flights performed over Nauset Marsh estuary (MA) identi-
fied high resolution, extensive diffuse SGD inputs associated with ni-
trate fluxes equivalent to 1–3 mmol m−2 h−1 (Portnoy et al., 1998).

Recently, airborne TIR remote sensing has shown to be useful for not
only qualitative recognitions of SGD but also for quantifying groundwa-
ter fluxes from freshwater springs (Danielescu et al., 2009) and from
localized point-source SGD (Kelly et al., 2013; Roseen, 2002) by estimat-
ing the thermal area of a discharge zone. Hydrologic estimates and in
situ measurements of discharge have been linearly correlated to the
areas of thermal plumes (Danielescu et al., 2009; Kelly et al., 2013).
The resulting regression equation can be applied to extrapolate local
groundwater fluxes on a regional scale and potentially reduce the
amount of necessary field sampling. Danielescu et al. (2009) include dif-
fuse seepage in their discharge calculations via MODFLOW estimates,
while Kelly et al. (2013) acknowledge that their plume area 222Rn-
derived discharge estimates underestimate total discharge by excluding
diffuse SGD.

Two radionuclide tracers, radon and radium, are often used for re-
gional scale SGD studies, providing spatially integrated measurements
(Burnett et al., 2006). Radon (222Rn) and radium (223,224Ra) are appro-
priate proxies for quantifying SGD because they have short half-lives
and are naturally elevated in groundwater by several orders of magni-
tude relative to surface-waters. They are generated in the aquifer mate-
rial from the alpha recoil of their sediment-bound parent radionuclides
(Swarzenski, 2007). Additional inputs of radon and radium to the coast-
al water column include tidal advection, sediment diffusion, desorption
and riverine input, while loss terms include mixing with depleted
offshore waters, decay and, for radon, atmospheric evasion. Short
lived isotopes 224Ra (t1/2 = 3.6 d) and 223Ra (t1/2 = 11.4 d) not
only track SGD fluxes (Moore, 1996; Peterson et al., 2008) but also
can be used to calculate apparent water ages (Moore, 2000). In situ
222Rn (t1/2 = 3.8 d) measurements taken continuously along the
shoreline can quickly display the spatial variation of SGD over large
stretches of the coastline (Dulaiova, Peterson, Burnett, & Lane-
Smith, 2005) and can provide quantitative information on the vari-
ability of SGD rate (Dulaiova, Camilli, Henderson, & Charette,
2010). Coupling radionuclide measurements with TIR surveys has
been shown to be a reliable technique for identifying and character-
izing SGD over regional scales (Kelly et al., 2013; Mejias et al., 2012;
Mulligan & Charette, 2006; Peterson, Burnett, Glenn, & Johnson,
2009; Wilson & Rocha, 2012).

In many settings, TIR anomalies are present along specific stretches
of the shoreline but absent along other shoreline segments. This study
aims to quantify diffuse SGD along the north shore of Long Island, NY
using airborne TIR remote sensing coupled with in situ radionuclide
estimates of SGD. We propose that a mixture of fresh and circulated
seawater SGD (hereafter “fresh SGD” for simplicity), driven by a positive
terrestrial hydraulic gradient, produces TIR anomalies at our study sites.
Locations where SGD is composed only of circulated seawater derived
from tidal pumping and wave set-up lack the thermal contrast with
ambient seawater necessary to be resolved by TIR imagery. Fresh SGD
produced by a positive hydraulic gradient and circulated seawater
sourced from tidal pumping are likely the primary acting mechanisms
in coastal systems elsewhere, thus enabling the application of our
method to any region where significant pore-water/surface-water
temperature contrasts exist.
2. Methods

2.1. Study site

The Upper Glacial Aquifer of Long Island is an unconfined aquifer
of fine to coarse-grained glacially deposited quartz sand that overlies
a less permeable layer of clay deposits. Horizontal hydraulic conduc-
tivity for the outwash area of the Upper Glacial Aquifer ranges from 7
to 70 m d−1 with horizontal to vertical anisotropy between
10:1–100:1 (Buxton & Modica, 1992). The hydraulic gradient for
the Upper Glacial Aquifer is estimated to be 0.001 (Franke &
McClymonds, 1972) with a vertical hydraulic gradient between
0.02 and 0.08 in the upper meter of sediment (Bokuniewicz,
Pollock, Blum, &Wilson, 2004). Water north of Long Island's regional
groundwater divide discharges into north shore harbors and embay-
ments that exchange water with Long Island Sound (Scorca & Monti,
2001).

SGD along the shores of Long Island, NY has been described in
several locations (Beck, Rapaglia, Cochran, & Bokuniewicz, 2007;
Beck, Rapaglia, Cochran, Bokuniewicz, & Yang, 2008; Bokuniewicz
et al., 2004; Dulaiova et al., 2006; Durand, 2014; Young, 2013).
Early TIR flights identified extensive diffuse groundwater discharge
along the north shore of Long Island (Pluhowski, 1972). Recent
work in Long Island Sound estimated 32–74 × 1012 L y−1 SGD via
224Ra mass balance, which is approximately 1.3–3.5 times the dis-
charge of the neighboring Connecticut River (Garcia-Orellana et al.,
2014).
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2.2. Methodology overview

In this study airborne thermal infrared overflights were integrat-
ed with shoreline radionuclide surveys to investigate the relation-
ship between TIR area and groundwater seepage rate along the
north shore of Long Island, NY (Fig. 1). We characterized SGD in
three geomorphologically distinct areas along the north shore of
Long Island: Smithtown Bay (Site 1), Port Jefferson Harbor (Site 2),
and eastern Suffolk County, from Mount Sinai Harbor to Mattituck
Inlet (Site 3; hereafter referred to as “eastern Suffolk County”). SGD
was characterized in greater detail at two locations within
Smithtown Bay: a glacial outwash beach dominated by an extensive
diffuse TIR anomaly (Callahan's Beach; ID #4), and a sandy barrier
beach without any TIR anomaly (Long Beach; ID #8). At the two
sites, SGD was measured via 222Rn time series during September
2014; manual seepage meters were sampled during June 2014 and
the subterranean estuary (STE) was sampled along a shore perpen-
dicular transect in August 2014.
Fig. 1. Long Island, NY. Sample sites located on northern shore. Smithtown Bay (Site 1) sample
triangles and Eastern Suffolk County (Site 3) sample locations by green squares. Hollow symb
the regression analysis. Western Stony Brook Harbor (ID #11) is indicated by a purple “X”.
Table 1. (For interpretation of the references to color in this figure legend, the reader is referre
2.3. Thermal infrared remote sensing

A thermal infrared (TIR) overflight aboard a helicopter was per-
formed on 16 August 2013 between 13:30 and 14:00 EST to locate
areas of potential SGD into Smithtown Bay (Site 1, Fig. 1); low tide
was at 13:29 EST. The flight was performed on a calm, clear day for
optimal viewing conditions. A FLIR Systems T640 TIR camera was used
at an altitude of 1800 m (pixel-to-pixel thermal accuracy =0.1 K,
absolute accuracy ~2 K, wavelength range of 7.8–14 μm, lens field of
view =25° × 19°); each pixel field of view covers approximately
1.2 m of sea surface at 1800 m altitude. The infrared camera was cali-
brated for atmospheric reflectivity and transmission prior to the flight.
Visible images were taken simultaneously with thermal images using
the FLIR camera. Images were taken over the shore as close to nadir as
possible to reduce image obliquity. During each survey, the camera
was deployed out the side of the helicopter door and operated by
hand, with the lens at a minimum 150° angle from normal with an
attempt to keep the frame as vertical as possible. Two in situ
locations indicated by blue circles, Port Jefferson Harbor (Site 2) sample locations by red
ols indicate sampling locations without a thermal infrared anomaly that were included in
Location ID numbers, arranged west to east, correspond to location ID numbers within
d to the web version of this article.)
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temperature-depth loggers (Solinst) were deployed during the dura-
tion of the overflight (Johnson et al., 2008). SGD studies depend upon
relative temperature differences (Kelly et al., 2013), thus, we ignored
absolute temperature changes as appeared to be due to factors such as
the sea-surface effect, evaporative cooling, solar heating, reflected radi-
ance as a result of a slightly oblique viewing angle, sky temperature
heterogeneities, and surface water roughness.

An airborne TIR flight aboard a helicopter was conducted over Port
Jefferson Harbor (Site 2, Fig. 1) on 30 July 2014 between 08:29 and
08:38 EST; low tide was at 08:16 EST. Flight data was collected at an al-
titude of 1150m resulting in a pixel spatial resolution of 0.8 m. An addi-
tional airborne TIR flight aboard a helicopter was conducted over
eastern Suffolk County from Mount Sinai Harbor to Mattituck Inlet
(Site 3, Fig. 1) on 12 September 2014 between 8:10 and 8:50 EST; low
tide was at 8:09 EST. The first flight path collected data at 1800 m alti-
tude and the second flight path collected data at 820 m altitude,
resulting in a pixel spatial resolution of 1.2 and 0.5 m, respectively.

Landsat scenes from 1990 to 2015 were selected if cloud cover was
b10%, if the image scene was within ±1 h of low tide, and if the scene
was collected in a month of maximum thermal contrast between the
discharging groundwater and ambient surface-waters (December,
January, February, July, August, September), resulting in four Landsat
5-Thematic Mapper images (Table S1). Landsat 7 ETM+ images with
the scan line corrector off were excluded from the analysis. Airborne
TIR imagery has been down-scaled to Landsat resolution for appropriate
comparison.

2.4. TIR image processing

TIR images were compared to visible light imagery and to a 1m con-
tour bathymetry dataset (NOAA, 2007) to initially exclude temperature
anomalies related to storm drain runoff, sewage outfall, and/or
bathymetry. The thermal images were georeferenced to current NYS
orthomosaics (0.25 m spatial resolution), available from New York
State Orthos Online (www.orthos.dhses.ny.gov, accessed on 10/11/
2013) using a minimum of 50 ground control points. Due to the differ-
ent spatial resolutions between the orthomosaic and the airborne ther-
mal imagery, and the slightly off-nadir pointing of the thermal imagery,
a first order polynomial cubic convolution warp was applied to the air-
borne thermal images in order to improve the georegistration. The off-
shore area of an image will likely have a larger spatial error from
georectification due to fewer fixed points available for georeferencing
in the water; however, because all images are processed in the same
manner, this error will be approximately the same between images
and sites. Landsat 5 TM radiance data was converted to kinetic temper-
ature by using Planck's law and a constant emissivity value of 0.98 for
water. No correction for atmospheric effects was made.

Multiple temperature profiles were arbitrarily created across an in-
dividual georectified infrared image in order to delineate the boundary
temperature between SGD and ambient surface-waters (Kelly et al.,
2013). The boundary temperature was conservatively defined as the
maximum rate of change in temperature, relative to pixel distance,
within 0.1 °C (the cameras pixel-to-pixel TIR accuracy). The average of
the profile boundary temperatureswas taken to define the offshore spa-
tial extent of SGD (see Section 3.1.1). The landward boundary of the dif-
fuse seepage zonewas takenwhere the thermal signal ended in shallow
water against the beach or against docks and jetties, and is represented
by the coolest part of the temperature profiles. Region of interest poly-
gons were created over each TIR scene to calculate the pixel tempera-
ture distribution (see Fig. 2 for example). The surface area of each SGD
TIR anomaly was calculated as the cumulative sum of each pixel within
the region of interest below the defined boundary temperature. Kelly
et al. (2013); Danielescu et al. (2009) and Roseen (2002) successfully
used similar methodologies for calculating TIR area.

Error associated with georectification and with TIR area calculations
should be included in any SGD vs. TIR area regression equation. Thermal
areas calculated from the region of interest polygons varied by a maxi-
mum of 1.3% (n = 5; i.e. Fig. 2A), suggesting that the areal extent of
the region of interest polygons had a negligible effect on the calculated
discharge area. Amore sophisticated nadir-viewing pixel detector array
with an inertial navigation system and global positioning system
(Johnson et al., 2008; Kelly et al., 2013; Mejias et al., 2012) will reduce
geometric error, although this system is much more expensive than
the one employed in the present study.

2.5. Shoreline radionuclide surveys

TIR images were used to select locations for radium (223,224Ra)
surface-water sample collection at low tide directly following the Au-
gust 2013 Smithtown Bay flight (Site 1, Fig. 1); additional samples
were taken further offshore. Pore-water was concurrently sampled
from approximately 1 m depth along the low tide mark of the beach
face in order to measure end-member Ra concentrations (Beck et al.,
2008). Water samples (20–40 L) were collected in plastic carboys and
filtered through MnO2 impregnated acrylic fibers. Filters were immedi-
ately returned to the lab to be counted on a radium delayed coincidence
counter (Moore & Arnold, 1996) in order to measure the short-lived
224Ra isotope. The system was calibrated by measuring standards of
known activities of 232Th adsorbed on a MnO2 fiber column (Moore &
Arnold, 1996). A second measurement was performed approximately
10 days later in order to quantify 223Ra. The efficiency of the system
for counting 223Ra was determined following the methods outlined by
Moore and Cai (2013). Multiple standards and background readings
were taken before, between, and after analysis of the samples. Propaga-
tion of uncertainties for radium analysis was calculated following the
methodology outlined in Garcia-Solsona, Garcia-Orellana, Masque, and
Dulaiova (2008).

A continuous 222Rn survey (Dulaiova et al., 2005) was performed on
20 June 2013during low tide along the shoreline of SmithtownBay (Site
1) and on 6 September 2014 along eastern Suffolk County, fromMount
Sinai Harbor toMattituck Inlet (Site 3, Fig. 1). A continuous 222Rn survey
was conducted in Port Jefferson Harbor (Site 2, Fig. 1) during August
2012 (Young, Tamborski, & Bokuniewicz, 2015). Surface-water was
pumped (~2 L min−1) through a gas exchange membrane module
(Liquicel Co.) (Dulaiova et al., 2010; Schubert, Paschke, Lieberman, &
Burnett, 2012) in order to strip 222Rn gas out of the water phase to a
commercial radon-in-air monitor (RAD7, Durridge Co.) with a set inte-
gration time of ten minutes, while traveling at a constant boat speed of
approximately three knots. The RAD7 counts the α-decay of 222Rn by
measuring the activity of its short-lived daughters, 218Po and 214Po via
their energy discrimination into energy specific windows (Burnett &
Dulaiova, 2003). Atmospheric 222Rn measurements were made before
the survey while wind speed was continually monitored using a hand-
held anemometer (Kestrel). 222Rn activity in water was calculated
based on a known temperature and salinity dependence function
(Schubert et al., 2012). A laboratory calibrated YSI 556 handheld
multi-parameter probe with flow-through cell capability was used to
record water temperature, salinity, dissolved oxygen, and oxidation-
reduction potential continuously along the survey track while position
was monitored with a GPS.

2.6. Site inter-comparison

222Rn surface-water activities were monitored for a 24 h period
(Burnett & Dulaiova, 2003) at Callahan's Beach (ID #4; Site 1,
Smithtown Bay) and Long Beach (ID #8; Site 1, Smithtown Bay) in
September 2014. Surface-water was continually pumped and fed
into an air-water exchanger, as described above, recording a 222Rn
measurement every hour. SGD was directly measured using vented,
benthic chambers (a.k.a. “seepage meters”) (Lee, 1977) in a shore-
perpendicular transect (n = 4 seepage meters) in June 2014. At
Callahan's Beach, seepage meters S1–S4 were placed 10, 21, 25, and

http://www.orthos.dhses.ny.gov


Fig. 2. (A) August 2013 TIRmap of Eastern Short Beach (ID #6), located within Smithtown Bay (Site 1), displaying diffuse seepage interrupted by shallow sediment interference. Area in-
dicated by white arrow is a large glacial erratic with a muchwarmer thermal signature compared to the cold SGD inputs. NYS visible orthorectified imagery was acquired at a higher tidal
stage then the TIR overflight. The region of interest polygon used to calculate TIR anomaly area is represented by a white dashed rectangle. (B) Temperature transects drawn to delineate
the SGD/surface-water boundary temperature. Calculated boundaries temperatures are indicated by black circles.
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12 m offshore, respectively. At Long Beach, meters S1-S4 were placed
15, 19, 25, and 17.5 m offshore, respectively. The fourth seepage meter
was placed approximately 3 m next to the first seepage meter in the
longshore direction in order to assess small scale seepage variability
(Michael, Lubetsky, & Harvey, 2003). Seepage meters were placed ap-
proximately 10 cm into the sediment and allowed to equilibrate for at
least 24 h prior to sampling to ensure complete flushing of seawater
(seepage meter headspace was less than 10 cm, and average seepage
rates were ≫10 cm d−1). Collection bags were not prefilled (Shaw &
Prepas, 1989) in order to measure the salinity and nutrient concentra-
tions of the discharging fluid. Seepage meter samples were filtered
(0.45 μm) and analyzed via Lachat Quickchem 8000 + FIA series.

An intertidal transect of monitoring wells screened at multiple
depths was sampled in August 2014 to directly sample pore-waters in
the subterranean estuary (STE). Monitoring wells were located at
Callahan's Beach and Long Beach, with multi-level wells positioned at
the low tide mark, an intertidal location, and at the high water mark
of the beach. Wells were sampled via peristaltic pump after sufficient
well purging, during low tide. A YSI 556 handheld multi-parameter
probe was used to measure water quality parameters, as described in
Section 2.5.

2.7. Calculating SGD, apparent water ages & residence times

222Rn shoreline surveys were converted into SGD fluxes following
the revised methods of Dulaiova et al. (2010). Excess 222Rn (Bq m−3)
was calculated as the 222Rn unsupported by parent 226Ra decay:

222Rnexcess ¼ 222Rntotal−226Ra ð1Þ

226Ra surface-water samples collected in SmithtownBay (Site 1) and
across the axial transect of Long Island Sound (mean = 1.53 Bq m−3,
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n = 26) were used to calculate excess 222Rn (Garcia-Orellana et al.,
2014). A 222Rn inventory was calculated by multiplying each excess
222Rn measurement by the water column depth (z).

222Rninventory ¼ 222Rnexcess � z ð2Þ

The 222Rninventory calculation assumes that 222Rn is distributed ho-
mogeneously throughout the water column. This assumption is valid
in shallow, well mixed coastal systems, such as our three sites analyzed
here. The maximum depth observed during the three shoreline radio-
nuclide surveys was 2.5 m, which is assumed to represent a well-
mixed water column. In deeper offshore and lower energy environ-
ments where water column stratification occurs, this assumption may
not necessarily be valid. The radioactive decay constant (λ) of 222Rn
(0.18 d−1) was multiplied by 222Rninventory to produce a steady-state
coastal 222Rn flux (Bq m−2 d−1).

222RnSteady�State Flux ¼ 222Rninventory � λ ð3Þ

222Rn loss via atmospheric evasion was corrected for using a
stagnant film model (MacIntyre, Wanninkhof, & Chanton, 1995) (Jatm;
Bq m−2 d−1), where k is the gas transfer coefficient of 222Rn, Cw and
Catm are the concentration of 222Rn in thewater column and atmosphere
respectively, and α is Oswald's solubility coefficient.

Jatm ¼ k � Cw−α � Catmð Þ ð4Þ

Atmospheric evasion and tidal mixing losses ( Jmix) are added back
into each steady-state coastal 222Rn flux measurement as:

222RnCorrected Flux ¼ 222RnSteady�State Flux þ Jatm þ Jmix ð5Þ

Sediment diffusion inputs are anticipated to be small and were ex-
cluded from this analysis. 222Rn diffusive fluxes were experimentally
determined to be 1.3 Bq m−2 d−1 from a core incubation experiment
taken atWestMeadow Beach (ID #9, Site 1) (Tamborski, 2014). Assum-
ing steady-state conditions, this flux would support less than 5% of the
observed 222Rn inventory, which is in strong agreement with experi-
mental data from Waquoit Bay, MA (Dulaiova et al., 2010). The
corrected 222Rn fluxwas divided by a shallowgroundwater endmember
(222Rngw) to calculate SGD rate (m d−1).

Qsgd ¼
222RnCorrected−Flux

222Rngw
: ð6Þ

In Smithtown Bay, we used a brackish endmember for measure-
ments taken where TIR anomalies were observed; the average salinity
and 222Rn activity of the Callahan's Beach low tide wells was 24.0 and
789± 258 Bqm−3 (n= 5), respectively. A saline endmemberwas cho-
sen for site locationswhere therewas no observable TIR anomaly, taken
as the average of the Long Beach low tidewells with a salinity and 222Rn
activity equal to 27.8 and 1554± 168 Bqm−3 (n= 6), respectively. For
the eastern Suffolk County survey, we use an average endmember
sampled from shallow push-point piezometers (salinity = 18.0; 222Rn
average = 1740 Bq m−3; range = 1530–1950 Bq m−3; n = 2).

Time-series SGD vertical advective velocities for Callahan's Beach
and Long Beach were calculated by assessing the change in the water
column 222Rn inventory (Eq. (2)) with respect to time (Burnett &
Dulaiova, 2003). Net 222Rn fluxes were calculated as the sum of the
hourly 222Rn flux, atmospheric loss, ebb tide loss and flood tide gain
for each hourly time interval. Tidal losses were estimated as the net
flux loss of 222Rn over the tidal sampling period (Burnett & Dulaiova,
2003).

224Ra SGD fluxes were calculated similarly to the 222Rn shoreline
surveys, except that the term for atmospheric loss was not needed
(Peterson et al., 2008). A measured offshore value of 1.7 Bq 228Th m−3
(n=4)was subtracted from all surfacewater samples to determine ex-
cess 224Ra. Because nearshore residence times were anticipated to be
short, we used the activity ratios of 224Ra and 223Ra in surface-water
and pore-water to calculate the surface-waters apparent radium water
age (Moore, 2000; Tovar-Sanchez et al., 2014) as:

t ¼ ln
ARpw
ARsw

� 1
λ224−λ223

ð7Þ

where t is the apparent radium age of the surfacewater, ARpw and ARsw

are the measured 224/223 radium activity ratios in pore-water and
surface-water, respectively, and the λs are the radium isotope decay
constants.

At steady-state the residence time, T, of pore-water using radium
isotopes (Bokuniewicz et al., in press) is:

Ra½ �T ¼ Ra½ �o � e−λT þ Ra½ �eq: � 1−e−λT� � ð8Þ

where T is the pore-water residence time, [Ra]T is the activity of 224Ra at
time T, [Ra]o is the activity of 224Ra of the surface-waters infiltrating the
beach face at high tide, [Ra]eq. is the activity of 224Ra at steady state, and
λ is the 224Ra decay constant. An additional Ra input term would be
required in Eq. (8) if deeper groundwater had mixed with the shallow,
circulated pore-water. Inclusion of this additional Ra term would result
in shorter calculated residence times.

Uncertainty in calculating SGD determined by radionuclide mea-
surements are well understood (Burnett, Santos, Weinstein,
Swarzenski, & Herut, 2007; Garcia-Solsona et al., 2008). The largest
source of uncertainty in an SGD study is generally the radionuclide ac-
tivity of the groundwater endmember (Burnett et al., 2007), which
may be both spatially and temporally variable (Luek & Beck, 2014). In
this study, a total of 13 endmembers were used, which has been
suggested to adequately capture the “mean” endmember activity (12
endmembers or greater; Sadat-Noori, Santos, Sanders, Sanders, &
Maher, 2015). For any radionuclide, mixing losses with offshore waters
will introduce error while 222Rn loss via atmospheric evasion can create
greater errors at higher wind speeds.Where fine-grained sediments are
present, fluxes of 222Rn and 224Ra mediated by diffusion or bioturbation
can represent a significant input source to surface waters (Garcia-
Orellana et al., 2014).

3. Results

3.1. Thermal infrared remote sensing

3.1.1. Airborne TIR remote sensing
The thermal infrared overflights revealed spatially variable, non-

point source diffuse SGD occurring along the north shore of Long Island
(Fig. 1). Shore-perpendicular temperature transects showed significant
cold-water inputs, presumably due to SGD, creating localized nearshore
temperature anomalies (Figs. 2, 3). Twenty-five TIR anomalies were
identified, sevenwithin Smithtown Bay (Site 1), eleven in Port Jefferson
Harbor (Site 2) and seven along eastern Suffolk County (Site 3). In Port
Jefferson Harbor, four temperature anomalies located in the southern
portion of the harbor were associated with a storm drain and sewage
outfall from the Port Jefferson Sewage Treatment Plant (Fig. 4). Two ad-
ditional anomalies located on the western shoreline were associated
with bathymetry and where stands of Spartina alterniflora were found.
These temperature anomalies were not used in the subsequent analysis.
The five remaining temperature anomalies in Port Jefferson Harbor
were considered to be due to SGD, located on the eastern and southern
portions of the harbor (Fig. 4).



Fig. 3. (A) August 2013 TIR map of Callahan's Beach (ID #s 3 & 4), located within Smithtown Bay (Site 1), displaying ubiquitous, diffuse seepage. NYS visible orthorectified imagery was
acquired at a higher tidal stage then the TIR overflight. (B) Temperature transects perpendicular to the shoreline at Callahan's Beach drawn to delineate the SGD/surface-water boundary
temperature. Calculated boundaries temperatures are indicated by black circles.
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Following Wilson and Rocha (2012), we define the observed
temperature anomalies relative to the ambient surface-waters:

ΔT ¼ TBoundary−TOffshore ð9Þ

where TBoundary is the defined boundary temperature for each location
and TOffshore is the average surface-water pixel temperature observed
offshore for each scene. Smithtown Bay (Site 1) ΔT ranged from −0.6
to −1.4 °C; Port Jefferson Harbor (Site 2) ΔT ranged from −0.7 to
−1.6 °C and eastern Suffolk County (Site 3) ΔT varied from −1.1 to
−2.1 °C (Table 1). The area of cool TIR anomalies measured within
Smithtown Bay varied from 2020 to 23,260 m2 (Table 1). In Port
Jefferson Harbor, TIR surface areas ranged from 1930 to 9660 m2

while thermal areas for eastern Suffolk County were between 2470 to
9310 m2 (Table 1). Except for Long Beach Bluffs (ID #7, Site 1), ΔT
was linearly correlated with TIR anomaly area (R2 = 0.60, for all
sites), signifying that larger TIR anomalies were due to the input of
cooler temperature pore-waters. There were no large differences be-
tween the ΔT vs TIR anomaly area slopes for the three different study
sites (Fig. S1). Of the 18 observed TIR anomalies, four were artificially
bound by docks or jetties (ID #2, Site 1; ID #s 12 & 14, Site 2; ID #23,
Site 3).

All three TIR overflights revealed several locations on the north
shore of Long Island without any nearshore temperature anomaly. Of
the 18 km shoreline imaged within Smithtown Bay, approximately
85% of the shoreline lacked any TIR anomaly, while 84% of the 7.5 km
long Port Jefferson Harbor shoreline lacked any TIR anomaly. In the
ensuing discussion, we focus on Long Beach (Section 4.1; Fig. 5).

3.1.2. Satellite TIR remote sensing
The 60 m (resampled from 120 m) spatial resolution of Landsat 5-

TM TIR data is inadequate for accurately resolving diffuse SGD along
Long Island (Fig. 6). Of the 18 TIR anomalies identified during the vari-
ous airborne overflights, none were identifiable from the Landsat data.



Fig. 4. July 2014 airborne TIRmap of southern Port JeffersonHarbor (Site 2), with Saints Orchard Road (ID #14; northern anomaly) and Centennial Park (ID#13; dashed rectangle). South-
western TIR anomalies correspond to the Port Jefferson Harbor sewage treatment plant outfall and storm drain runoff. TIR data ismissing in-between thewestern and eastern TIR images.
Inset: In situ nearshore surface-water temperature-salinity distribution for Centennial Park.
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In order for thermal imagery to be used as a qualitative indicator of dif-
fuse SGD on Long Island, the thermal images need to have a minimum
spatial resolution of 30m, and 15m resolution to be used in a quantita-
tive analysis (Fig. 6). TIR detection of SGD temperature anomalies will
ultimately depend upon the size of the anomaly; here, the average
Long Island TIR anomaly falls below the Landsat TIR detection limit.
3.2. Shoreline radionuclide surveys

224Ra surface-water activities within Smithtown Bay (Site 1) ranged
from 3.8 Bqm−3 at Eastern Short Beach (ID #6) to 16.2 Bqm−3 at Long
Beach Bluffs (ID #7), measured at the sites of TIR anomalies. 224Ra pore-
water activities, measured adjacent to the surface-water samples at the



Table 1
Sample locationswith their associated TIR properties, asmeasured by the various airborne
TIR overflights. ΔT is calculated as the difference between each TIR anomaly boundary
temperature and the average offshore temperature. TIR Area is the 2-dimensional spatial
extent of the observed TIR anomalies. Location ID numbers correspond to Fig. 1.

Location ID ΔT TIR area

m2

Smithtown Bay — Site 1
Makamah West 1 −1.1 2070
Makamah East 2 −0.8 5390
Callahan's Beach West 3 −0.9 4620
Callahan's Beach East 4 −0.9 4320
Sunken Meadow Bluffs 5 −0.6 2020
Eastern Short Beach 6 −1.4 8220
Long Beach Bluffs 7 −1.1 23,260
Long Beach 8 n/a 0
West Meadow Beach 9 n/a 0
Crane Neck 10 n/a 0

Port Jefferson Harbor — Site 2
Van Brunt Manor Road 12 −1.2 4740
Centennial Park 13 −1.6 5800
Saints Orchard Road 14 −0.9 9660
Molts Hollow Road 15 −0.7 2470
Anchorage Road 16 −0.7 1930
McAllister Park 17 n/a 0

Eastern Suffolk County — Site 3
Miller Place 18 −1.4 9220
Wading River West 19 −1.4 4280
Wading River East 20 −1.1 3610
Beach Way Marsh 21 −1.3 9310
Baiting Hollow 22 −2.1 7460
Northville 23 −1.1 2480
Mattituck Inlet 24 n/a 0

210 J.J. Tamborski et al. / Remote Sensing of Environment 171 (2015) 202–217
low tidemark, ranged from 28.3 Bqm−3 at Eastern Short Beach (ID #6)
to 63.2 Bq m−3 at Callahan's Beach West (ID #3). 224Ra uncertainties
were calculated to be ±6% (Garcia-Solsona et al., 2008). Surface-water
Fig. 5. August 2013 TIR map of Long Beach (ID #8), located within Smithtown Bay (Site 1), wit
than the previous figures. NYS visible orthorectified imagery was acquired at a higher tidal sta
excess 222Rn varied from 8.6 Bq m−3 at Crane Neck (ID #10) to
53.5 Bq m−3 at Makamah East (ID #2). Due to the spatial and temporal
integration of the 222Rn measurements, uncertainties were as large
as 56%. SGD rates calculated from the August 2013 Smithtown Bay
radionuclide surveys range from 2.1 to 16.2 cm d−1 within the TIR
anomalies, with a near 1:1 relationship between 222Rn and 224Ra
estimates (slope = 0.93; R2 = 0.98). 222Rn and 224Ra results for
Smithtown Bay are summarized in Tables 2 & 3, respectively. Aver-
age pore-water residence times equal 1.3 ± 0.4 d when [Ra]° is set
to 5 Bq m−3, and assuming [Ra]eq of 184 Bq m−3 (Bokuniewicz
et al., in press) (Table 3). For the September 2014 eastern Suffolk
County survey, surface-water excess 222Rn ranged from 11.7 to
27.4 Bq m−3. 222Rn SGD estimates within TIR anomalies ranged
from 4.7 to 9.5 cm d−1. SGD was only 1.4 cm d−1 at Mattituck Inlet
(ID #24), where no anomaly was observed (Table 2).

222Rn estimates of SGD for Port JeffersonHarbor in August 2012have
been previously calculated by Young et al. (2015). SGD outside of TIR
anomalies averaged 1.6 cm d−1, while SGD in locations within TIR
anomalies varied from 2.3 to 13.0 cm d−1. Surface-water radionuclide
and SGD results for Port Jefferson Harbor and eastern Suffolk County
are presented in Table 2.
3.3. TIR area vs. SGD

There was a strong, positive linear relationship between the area
of diffuse TIR anomalies and SGD rate calculated from the shoreline
radionuclide surveys (Fig. 7A), signifying that zones of spatially exten-
sive thermal anomalies experienced greater SGD. The use of two
independent radionuclide tracers (224Ra and 222Rn) for our analysis in
Smithtown Bay has provided an extra level of confidence in our results.
We excluded 223Ra fromour analysis becausemeasurement of 224Ra has
less uncertainty (Garcia-Solsona et al., 2008), however, 223Ra and 224Ra
exhibit a positive linear relationship, suggesting that all three isotopes
h no apparent nearshore temperature anomaly. Note that the temperature range is higher
ge than the TIR overflight.



Fig. 6.Airborne TIR image of “Makamah East” (ID #2) at low tide on August 16, 2013 at (A) 1.2m, (B) 15m and (C) 30m spatial resolution. (D) Landsat 5 TM infrared image of “Makamah
East” at low tide on August 25, 2000 with 120 m resolution resampled to 60 m pixel size.
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are useful tracers for this analysis. The SGD rate regression equation
slopes for Smithtown Bay, eastern Suffolk County and Port Jefferson
Harbor are 0.0006, 0.0007, and 0.0012 cm d−1 m−2, respectively.

Dulaiova et al. (2010) showed that total SGD (fresh plus circulated
seawater) can be calculated from shoreline 222Rn surveys if the area of
the seepage face is known.We define the offshore extent of our seepage
face in Smithtown Bay and Eastern Long Island Sound as 30m, based on
the infrared temperature transects (Figs. 2B, 3B) and seepage meter
results (Fig. 8). The lateral extent of our seepage face is taken as the half-
way point in between each 222Rnmeasurement. Total SGD estimates for
Smithtown Bay, eastern Suffolk County, and Port Jefferson Harbor ex-
hibit a positive linear relationship with TIR anomaly area (Fig. 7B). The
regression slope of Port Jefferson Harbor (0.1 m3 d−1 m−2) is signifi-
cantly less than Smithtown Bay (0.3 m3 d−1 m−2) and eastern Suffolk
County (0.3 m3 d−1 m−2) because Port Jefferson Harbor is a consider-
ably smaller body of water, permeable sediments extend no further
than 23 m from the shoreline, and measurements were made at 200–
250 m intervals (Young et al., 2015).
3.4. Site inter-comparison

Seepage meters recorded spatially and temporally variable SGD at
Callahan's Beach (ID #4; Site 1) and Long Beach (ID #8; Site 1) during
June 2014. At Callahan's Beach, SGD measured via seepage meters
ranged from 5 to 47 cm d−1, with maximum values recorded approxi-
mately one hour after low tide for all four meters (Fig. 8A). Measured
SGD decreased in salinity over the course of the tidal cycle, with salinity
varying from 15.6 to 26.7. Pore-water NO3

− sampled from the seepage
meters followed conservative, linear mixing between the fresh ground-
water and circulated seawater endmembers (Fig. 8C). September
surface-water 222Rn activities varied from 2.5 to 22.2 Bq m−3 with an
inverse relation to the tidal water-level elevation (Fig. 9A). SGD rates
calculated from the 222Rn time series ranged from 3 to 38 cm d−1

with an average seepage rate of 18 cm d−1 for the September survey
(Fig. 9C). Pore-water profiles displayed an upper saline circulation cell
within the intertidal zone, with persistent freshwater at depths greater
than 4 m and ubiquitous freshwater at the high water mark (Fig. S2A).



Table 2
222Rn surfacewater activities and SGD estimates for all study sites along the north shore of
Long Island, NY. Pore-water salinities were measured at the low tide mark of the beach
using a shallow push-point piezometer. Location ID numbers correspond to Fig. 1.

Location ID Pore-water
salinity

222Rn 222Rn
error

222Rn
SGD

222Rn SGD
error

Bq m−3 Bq m−3 cm d−1 cm d−1

Smithtown Bay — Site 1
Makamah West 1 26 37.7 18.4 3.2 0.8
Makamah East 2 27 53.5 21.9 4.4 1.0
Callahan's Beach West 3 23 44.3 19.8 6.1 1.2
Callahan's Beach East 4 14 23.7 15.2 5.0 1.1
Sunken Meadow Bluffs 5 27 22.2 14.9 2.1 0.9
Eastern Short Beach 6 24 21.1 14.7 5.6 2.0
Long Beach Bluffs 7 27 28.4 16.3 16.2 3.1
Long Beach 8 29 24.0 14.2 2.0 0.9
West Meadow Beach 9 26 17.8 13.7 1.5 0.8
Crane Neck 10 29 8.6 10.5 0.9 0.8

Port Jefferson Harbor — Site 2
Van Brunt Manor Road 12 35.6 352 272 6.1 2.3
Centennial Park 13 26.7 420 300 7.4 2.6
Saints Orchard Road 14 26.7 150 213 13.0 6.4
Molts Hollow Road 15 26.2 369 291 5.5 2.3
Anchorage Road 16 32.3 587 342 2.3 1.8
McAllister Park 17 34.4 183 198 1.6 1.6

Eastern Suffolk County — Site 3
Miller Place 18 23.9 22.2 13.7 8.2 3.4
Wading River West 19 21.6 15.7 12.0 4.7 2.6
Wading River East 20 28.4 18.3 12.7 7.2 2.8
Beach Way Marsh 21 28.7 27.4 14.9 9.5 3.2
Baiting Hollow 22 21.2 22.2 13.7 7.1 2.6
Northville 23 19.0 15.6 12.0 5.0 2.2
Mattituck Inlet 24 29.3 11.7 10.8 1.4 1.0

Fig. 7. (A) Estimated SGD rate, calculated from shoreline radionuclide surveys (224Ra and
222Rn), vs. TIR anomaly area. (B) Total SGD (fresh+ circulated), calculated from shoreline
222Rn surveys, vs. TIR anomaly area. Only 222Rn derived SGD values are reported, as the
shoreline 222Rn surveys provided a larger, spatially integrated measurement in compari-
son with 224Ra.
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At Long Beach, SGDmeasured from seepagemeters ranged from 5 to
28 cm d−1 with maximum values recorded at low tide for all four me-
ters (Fig. 8B). Seepage meter S4, placed 3 m from S1, recorded substan-
tially higher flow rates over the entire sampling period in comparison to
S1.Meters S2 and S3, placed further offshore, recorded higher flow rates
than the meters closest to the shoreline, suggesting that measurable
flow heterogeneity exists at Long Beach. Salinity varied from 25.6 to
27.1 between the four meters and did not exhibit any relationship
with NO3

− (Fig. 8C). High salinity pore-water at Long Beach suggests
that SGD is composed of circulated seawater. Surface-water 222Rn activ-
ities ranged from 1.5 to 57.7 Bq m−3 and showed temporal variability
with an inverse relationship with tidal water-level elevation (Fig. 9B).
222Rn time series SGD rates ranged from1 to 27 cmd−1 with an average
rate of 8 cmd−1 for the September survey (Fig. 9D). Pore-water profiles
revealed a shallow freshwater lens from 1 to 2 m depth at the high
watermark, followed by a rapid increase in salinity with depth. High sa-
linity pore-water was observed along all depths within the intertidal
zone. At the high water mark, brackish pore-water was present at 6 m
depth, suggesting that Long Beach has potential for regional freshwater
discharge (Fig. S2B).
Table 3
Surface water 223,224Ra measured within TIR anomalies, for Smithtown Bay (Site 1) and estim
(days).

Location ID 224Ra 224Ra error 223Ra

Bq m−3 Bq m−3 Bq m−3

Makamah West 1 5.10 0.27 0.33
Makamah East 2 5.08 0.13 0.24
Callahan's Beach West 3 7.04 0.19 0.41
Callahan's Beach East 4 6.43 0.17 0.47
Sunken Meadow Bluffs 5 4.03 0.10 0.30
Eastern Short Beach 6 3.81 0.10 0.23
Long Beach Bluffs 7 16.17 0.42 1.48
4. Discussion

4.1. Fresh vs. Saline SGD

4.1.1. Identification of fresh SGD
Results from the seepage meter measurements and the 222Rn time

series suggests that SGD at Callahan's Beach, within a large diffuse TIR
anomaly (Fig. 3), was a site of mixed fresh and circulated seawater
SGD. In contrast, pore-water salinity measurements suggest that SGD
at Long Beach was composed of circulated seawater only. Despite the
ated water residence times. SW = surface water; PW= pore-water; τ = residence time

223Ra error SW τ PW τ 224Ra SGD 224Ra SGD error

Bq m−3 d d cm d−1 cm d−1

0.02 2.2 1.3 3.3 0.4
0.01 2.0 1.6 3.2 1.0
0.01 1.8 2.1 4.7 0.6
0.01 2.6 1.0 5.0 0.7
0.01 2.4 1.1 2.4 0.4
0.01 1.4 0.7 5.1 1.2
0.04 2.1 1.4 15.2 1.3



Fig. 8. Seepage meter derived SGD measurements at (A) Callahan's Beach (ID #4, Site 1) and (B) Long Beach (ID #8, Site 1) during June 2014. Tidal water level is indicated by the gray
dashed line. (C) SGD salinity vs NO3

− from the seepage meter sampling campaign for Callahan's Beach and Long Beach.
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absence of any substantial freshwater discharge at Long Beach (as indi-
cated by the seepagemeters), seepage rates between the two sites were
similar inmagnitude (Figs. 8, 9).We have identified a positive, linear re-
lationship between SGDmagnitude and the surface areal extent of a TIR
anomaly (Section 3.3; Fig. 7). Based on the measured SGD fluxes from
the three study sites, SGD must exceed 2.1 cm d−1 in order to produce
a TIR anomaly (Tables 2 & 3). From the 222Rn time series and seepage
meter data, we would expect a coastal TIR anomaly to occur at Long
Beach, however, no such anomaly was observed (Fig. 5). The absence
of a TIR anomaly in the presence of significant SGD suggests that pore-
Fig. 9. Time-series 222Rn survey at (A) Callahan's Beach (ID #4, Site 1) and (B) Long Beach (
(C) Callahan's Beach and (D) Long Beach.
water salinity is tightly coupled to the magnitude of SGD flux and that
SGD sourced from circulated seawater processes does not have a suffi-
ciently long residence time within the subterranean estuary (STE) to
be thermally contrasted with respect to the ambient seawater from
which it was derived.

TIR remote sensing can qualitatively identify mixed fresh and circu-
lated seawater SGD and in this study was unable to identify areas com-
posed exclusively of circulated seawater SGD. This is demonstrated by
shallow pore-water salinity at each location (Tables 2 & 3), in situ
surface-water temperature/salinity data from Centennial Park (ID #13,
ID #8, Site 1) during September 2014. SGD rates calculated from 222Rn mass balance at
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Site 2; Fig. 4) and by the seepage meter results from the localized site
inter-comparison experiments (Section 3.4). The three sampled loca-
tions that were unable to be resolved by TIR imaging in Smithtown
Bay have pore-water salinities between 26 and 29. In comparison, the
seven locations sampled within a TIR anomaly have shallow pore-
water salinities that vary from 14 to 27. For the eastern Suffolk County
survey, shallow pore-water salinity within TIR anomaly areas varied
from 19 to 28.7, with pore-water salinity in excess of 29 outside of TIR
anomalies. While pore-water data is limited, these results suggest that
the observed TIR anomalies were composed of a mix between freshwa-
ter and circulated seawater.

Fresh SGD has a substantial thermal contrast with ambient surface-
waters because the fresh fraction of SGD reflects the mean annual
groundwater temperature (Anderson, 2005). Circulated sea-water
SGD is likely to have less thermal contrast with surface-waters on
short residence time scales within the beach face (Befus, Cardenas,
Erler, Santos, & Eyre, 2013). Pore-water residence times for the sites
where SGD was composed of circulated seawater were likely not long
enough to cool the pore-water within the beach face relative to the am-
bient surface-waters (mean= 1.3 ± 0.4 d, Table 3). Saline SGD derived
from seasonal oscillations of the water table (Michael et al., 2005),
density-driven circulation (Robinson et al., 2007) and flow across per-
meable barriers (Santos et al., 2012) are the only mechanisms that
could support a sufficiently long residence time (greater than weeks)
to permit thermal contrast with sea-water. Although TIR imagery is un-
able to differentiate between saline SGD and no SGD (which we do not
consider based on the excess radionuclide activities) we surmise that
the absence of a TIR anomaly provides useful information regarding
the mechanisms driving SGD and possibly solute transport.

4.1.2. Fresh fraction estimates
Airborne TIR imagery can create accurate sea surface temperature

maps, which can be used as a proxy for estimating surface-water nutri-
ent concentrations if there is an established relationship between
surface-water temperature, salinity and the nutrient of interest
(Johnson et al., 2008). A relationship between surface-water tempera-
ture and salinity is difficult to establish in heterogeneous, diffuse flow
systems where surface-water salinity gradients are minimal and river
inputs exist. Furthermore, complex biogeochemical reactions that take
place in the STE just prior to discharge may alter the final nutrient
species and overall concentration (Erler et al., 2014), which in turn
complicates mapping nutrients via TIR imagery. In eutrophic areas
where there is rapid biological uptake and utilization of surface-water
nutrients, TIR nutrient mapping of surface-waters is not possible.
While we cannot map surface-water nutrients via TIR imagery in eutro-
phic environments, we can use the fresh fraction of SGD to calculate
more accurate SGD nutrient loads as long as pore-water nutrient
endmembers have been accurately quantified.

If TIR anomalies can be demonstrated to represent amixture of fresh
and circulated seawater SGD, as they have been here, then the cumula-
tive area of TIR anomalies can be used to represent the spatial extent of a
region's diffuse fresh seepage face for improved fresh/saline SGD mass
balance estimates. Conservative mixing between nitrate rich, fresh
SGD and nitrate poor, saline SGD was measured by the seepage meter
sampling campaign at Callahan's Beach (Fig. 8C). A substantial nitrate
load was being supplied by SGD, despite the absence of any substantial
dissolved inorganic nitrate in the overlying surface-waters.

Port Jefferson Harbor had a total TIR anomaly area of 24,540 m2 at
low tide during September 2014 (Table 1). The average 222Rn-derived
specific discharge for the identified TIR regionswas 6.9 cm d−1. Distrib-
uted over the area of the TIR anomaly, this corresponds to 1680 m3 d−1

of fresh SGD, or approximately 11% of the total SGD estimate, which is in
agreement with estimates from other locations on Long Island (Beck
et al., 2008). Fresh fraction SGD estimates following Dulaiova et al.
(2010) are estimated to be 8% of the total SGD for Port Jefferson Harbor.
Young et al. (2015) classify SGD into Port Jefferson Harbor into three
types of nutrient modes according to sub-watershed boundaries:
(1) high, fresh, nutrient-richSGD in the southernwatershed; (2)moder-
ate SGD with moderate nutrients along the eastern watershed and
(3) low, nutrient poor circulated SGD in the northern and western wa-
tersheds. Qualitatively, the TIR data from this study supports the conclu-
sions of Young et al. (2015). There were no TIR anomalies identified
adjacent to the northern watershed. Only one TIR anomaly was identi-
fied along the western watershed, which corresponded to the western
shoreline segment with the greatest total SGD (ID #12). The agreement
between observations taken in 2012 and ours taken in 2014 suggest
that the spatial patterns of fresh SGD into Port Jefferson Harbor are
consistent over several years.

4.2. Technique limitations

TIR quantification of diffuse SGD provides conservative SGD esti-
mates. If the water column is stratified, as it often is during the summer
in Smithtown Bay and Long Island Sound (Garcia-Orellana et al., 2014),
then coldwater inputs from SGDmay not reach thewater's surface. This
limits our methodology to resolving nearshore temperature differences
and likely cannot capture offshore seepage (i.e. submarine springs)
in deeper environments. Care should be taken to plan overflights
during optimal viewing conditions. The time of year and day should
be accounted for to maximize thermal contrast and to reduce effects
from solar radiation, shadows, clouds and any other environmental var-
iables that may influence sea surface temperature (Duarte et al., 2006).

When comparing surveys from different locations and times, as we
do here, onemust be aware of the influence of differences in tidal stages
and the effects of solar heating on the water column. Considering that
each flight was conducted at different times (of the day and year), one
might expect there to be a significant difference in ΔT and the ΔT vs
TIR anomaly area (°C m−2) slope between each flight. While we do
not observe any significant difference between each flights ΔT vs TIR
anomaly area slope (Section 3.1.1; Fig. S1), we acknowledge that
differences in solar heating of the water column, particularly for the
Smithtown Bay flight that was conducted later in the day, may control
both ΔT and the TIR anomaly areas (e.g. Banks et al., 1996), resulting
in poor correlation coefficients. TIR flights performed later in the day
may diminish the thermal contrast between SGD and surfacewaters, al-
though this would likely result in conservatively defined TIR anomaly
areas. SGD varies with time on tidal and seasonal scales (Michael
et al., 2005); SGD should be measured during the same tidal stage and
season to reduce temporal uncertainties. Overflights should be per-
formed during low wind conditions to reduce thermal interference
from mixing, waves and upwelling processes.

Airborne TIR remote sensing can be a powerful technique for identi-
fying SGD even from oblique imagery (Duarte et al., 2006). As long as
images are taken at approximately the same altitude and angle, any spa-
tial error due to obliquity will be relative between images and regions,
thus the relative error in area from one location to the next should be
equal. Studies that require a precise, low uncertainty should quantify
SGD directly.

4.3. Geologic controls on TIR signal

The slope of a discharge area vs SGD regression line will likely vary
with varying regional hydrogeologic conditions (Kelly et al., 2013),
such as aquifer porosity, permeability, hydraulic conductivity and hy-
draulic gradient. For a fractured bedrock aquifer (Bokuniewicz et al.,
2008; Wilson & Rocha, 2012) or a karstic aquifer (Mejias et al., 2012),
discharge can occur through preferential flow paths, and as a result,
may be significantly greater than sandy outwash beaches subject to dif-
fuse SGD.Geologic controls on SGD, including influence by the hydraulic
gradient,may control the slopes of our regression equations. A total SGD
(m3 d−1) vs TIR area (m2) slope of 0.5m3 d−1 m−2 was calculated for a
basaltic environment in Hawai'i (Kelly et al., 2013). Danielescu et al.



Table 4
Regression equation slopes for the three locations imaged in this study. 1Data from Kelly et al. (2013). 2Data fromDanielescu et al. (2009); calculated regression equation was logarithmic
and represented stream discharge rather than SGD.

Location Specific Q vs. area slope Total Q vs. area slope Aquifer type

cm d−1 m−2 m3 d−1 m−2

Smithtown Bay, NY 0.0006 0.3 Glacial outwash deposits
Eastern Long Island, NY 0.0007 0.3
Port Jefferson Harbor, NY 0.0012 0.1
Pearl Harbor, Hawaii1 n/a 0.5 Volcanic basalts
Prince Edward Island, Canada2 n/a 52 Glacial till & highly fractured sandstone
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(2009) calculated a stream discharge vs TIR area regression slope of
52m3 d−1 m−2 for a highly fractured sandstone aquifer. In comparison,
we calculated total SGD regression slopes of 0.1, 0.3 and 0.3m3 d−1m−2

for a sandy, coastal plain aquifer (Table 4).
The SGD rate (specific discharge) regression equation (Fig. 7A) does

not have any scaling biases and can thus be used to compare regions
of varying size (Table 4). The slope for Port Jefferson Harbor
(0.0012 cm d−1 m−2) is 2 and 1.7 times greater than the slopes calcu-
lated for Smithtown Bay (0.0006 cm d−1 m−2) and eastern Suffolk
County (0.0007 cm d−1 m−2). A greater SGD rate regression slope for
Port Jefferson Harbor is indicative of concentrated groundwater
discharge in semi-enclosed coastal embayments (Cherkauer &
McKereghan, 1991; Durand, 2014) in comparison with straight beach
face environments. The three regression equations calculated in this
study highlight the importance of regionally characterizing SGD in dif-
ferent hydrogeologic and geomorphologic environments. In the absence
of freshwater SGD, the y-intercept of an SGD rate regression line should
represent the rate of tidally modulated, saline SGD. Even with zero
freshwater discharge, a sandy, sloped permeable beach should be sub-
ject to circulated SGD via wave and tidal pumping (Santos et al., 2012).

Along the southern shore of Long Island, seepage rateswere found to
be reduced under the presence of local impermeable sediments
(Bokuniewicz, 1980). Seepage variability has been linked to sediment
heterogeneity in which low permeability infill deposits inhibited dis-
charge of fresh groundwater along the shoreline, funneling freshwater
further offshore (Russoniello et al., 2013). Geologic faults were spatially
correlatedwith TIR anomalies and excess 222Rn activities along the coast
of Ireland, where geologic faults hydraulically enhanced SGD input to
the coast (Wilson & Rocha, 2012). As with these locations, the TIR area
of diffuse SGD along the north shore of Long Island may be controlled,
in part, by coastal geology.While we cannot obtain subsurface informa-
tion from TIR imagery, we acknowledge that the presence of subsurface
structures (i.e. clay lenses) may impede local discharge and thus limit
the production of a coastal TIR anomaly. Thus, when drawing conclu-
sions from TIR imagery, in situ measurements are required to distin-
guish between SGD inhibited sites and saline SGD. Visible light
imagery and bathymetry data sets can be used in a GIS to confirm
that water depth is not controlling the observed TIR signal. An exam-
ple of surficial geologic controls on a TIR signal is illustrated in
Fig. 2A, where a large, tidally exposed glacial erratic has masked a
portion of the cool nearshore TIR anomaly.
Table 5
Application of TIR regression equations to previously identified TIR imagery. Stony Brook
Harbor TIR data was collected from a preliminary flight in February 2013 and SGD is
calculated from the Port Jefferson Harbor regression equation. Wading River TIR data
was taken during June 1969 (Pluhowski, 1972); SGD is calculated from the eastern Suffolk
County regression equation.

Location ID TIR area Estimated SGD

m2 cm d−1

Western Stony Brook Harbor 11 11,400 15
Wading River West 19 3800 5
Wading River East 20 10,700 10
4.4. Application of regression equation to estimate SGD

Apreliminary airborne TIR survey identified an extensive, diffuse TIR
anomaly along thewestern shoreline of Stony Brook Harbor, NY in Feb-
ruary 2013. Delineating the area of the identified temperature anomaly,
we calculate a TIR area of 11,400 m2. Stony Brook Harbor is an embay-
ment of similar size and hydrogeology to Port Jefferson Harbor, both ex-
changing waters with Long Island Sound with semidiurnal tides
(~2.0 m). Application of the TIR regression equation from Port
Jefferson Harbor yields an SGD rate of approximately 15 cm d−1

(Table 5). Previous work in Stony Brook Harbor along the western
shoreline measured average SGD rates via ultrasonic and manual seep-
age meters of 29.8 and 23 cm d−1 (Durand, 2014). Radionuclides and
thermal imaging are designed to be used as larger scale, spatially
integrated measurements. Our remotely estimated seepage rate for
Western Stony Brook Harbor likely reflects an average seepage rate,
whereas the seepage meter estimates highlight small scale aquifer het-
erogeneities (Bokuniewicz et al., 2008; Michael et al., 2003).

Thermal infrared imagery acquired on 17 June 1969 over Wading
River, NY (Pluhowski, 1972) found two non-point source SGD anoma-
lies emanating into Long Island Sound. We estimate TIR areas of
3800 m2 and 10,700 m2 for the two distinct diffuse seepage zones
(Table 5). Wading River is located within our eastern Suffolk County
site (Site 3, Fig. 1). Usingour eastern Suffolk County regression equation,
we calculate seepage rates of 5 and 10 cmd−1 forWading River 1 and 2
during 1969. These estimates fall well within the range of estimates cal-
culated from our eastern Suffolk County 222Rn survey, where we mea-
sured 4.7 and 7.2 cm d−1 at the same locations in September 2014.
Application of our regression equation highlights the versatility of
remote sensing for the assessment of SGD over large time scales and
the capability to upscale local measurements to a regional basis.
5. Conclusions

Airborne thermal infrared remote sensing can be used as a quantita-
tive tool for estimating non-point source diffuse submarine groundwa-
ter discharge (SGD) by delineating the surface area of a thermal infrared
(TIR) anomaly. Discharge estimates determined from 224Ra and 222Rn
coastal surveys positively correlate with the areal extent of cool near-
shore TIR anomalies for several locations along the north shore of
Long Island, NY. At its current spatial resolution, Landsat TIR data is
inadequate for properly resolving diffuse SGD along Long Island.

SGDwas characterized in greater detail at two thermally contrasting
field sites using manual seepage meters and 222Rn time series measure-
ments. Results indicate that the site within a large, diffuse TIR anomaly
was composed of a mixture between fresh and circulated seawater SGD
whereas the second site,where noTIR anomalywas observed,was com-
posed of circulated seawater SGD only. Despite the absence of signifi-
cant freshwater discharge at the second site, SGD rates between the
two sites were comparable. Results suggest that TIR imagery identifies
locations of a mixture between fresh and circulated seawater SGD rath-
er than circulated seawater SGD alone, and is a useful tool for this pur-
pose. As a result, the cumulative thermal area of a region can be used
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as an approximation for the spatial extent of the diffuse fresh seepage
face to better calculate the fresh fraction of SGD in diffuse environments.
This technique can be applied to any region where there is an adequate
temperature difference between discharging pore-waters and ambient
surface-waters. Application of this technique can allow researchers to
remotely perform time-series estimates of SGD fluxes at previously
sampled locations, as we demonstrate with TIR data from Wading
River, NY. Regression equations developed for different geologic envi-
ronments may be applied to regions where intensive field sampling
may not be practical or possible.
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